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Abstract. It is common to classify satisfiability problems by their time
complexity. We consider another complexity measure, namely the length
of certificates (witnesses). Our results show that there is a similarity
between these two types of complexity if we deal with certificates ver-
ifiable in subexponential time. In particular, the well-known result by
Impagliazzo and Paturi [IP01] on the dependence of the time complexity
of k-SAT on k has its counterpart for the certificate complexity: we show
that, assuming the exponential time hypothesis (ETH), the certificate
complexity of k-SAT increases infinitely often as k grows. Another exam-
ple of time-complexity results that can be translated into the certificate-
complexity setting is the results of [CIP06] on the relationship between
the complexity of k-SAT and the complexity of SAT restricted to formu-
las of constant clause density. We also consider the certificate complexity
of CircuitSAT and observe that if CircuitSAT has subexponential-time
verifiable certificates of length cn, where c < 1 is a constant and n is the
number of inputs, then an unlikely collapse happens (in particular, ETH
fails).

1 Introduction

If we assume P 6= NP, the question of refined complexity classification of NP-
complete problems remains open. For example, what is the best possible running
time for deciding k-SAT, SAT, or CircuitSAT? Is it possible to solve k-SAT in
subexponential time? Is it possible to solve SAT or even CircuitSAT faster than
using the trivial enumeration of all assignments? Although the questions like
those above seem far enough from being resolved, many interesting results shed-
ding more light on such questions have been appeared for the past two decades,
see surveys in [DH09, PP10].

In this paper, we compare a time-complexity classification of problems in
NP with a classification based on the length of certificates (witnesses). Note
an asymmetry between these complexity measures. Any problem in NP can be
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trivially solved by enumerating all possible candidates for a certificate. Therefore,
if the certificate length is upper bounded by a function ` then the running time
is upper bounded by 2` up to the time needed for verifying a candidate. On
the other hand, if the running time is upper bounded by a function t then it is
not necessarily true that the certificate length is upper bounded by lg t (unless
E ⊆ NP, where E is the complexity class for exponential time with linear
exponent).

We observe a similarity between the two types of complexity classifications
for satisfiability problems. More specifically, we show that many known results
on the time complexity of k-SAT, SAT∆ (the restriction of SAT to formulas whose
clause density is at most ∆), and CircuitSAT have their counterparts for the
certificate complexity. It is important to note that this similarity holds for cer-
tificates defined as certificates verifiable in subexponential time (although the
polynomial-time verification suffices for some cases). Precise definitions for the
subexponential-time verification are given in Sect. 2. Our main results can be
summarized as follows.

Certificate complexity of k-SAT. It is well known that k-SAT can be solved
in time O(2cn) where n is the number of variables and c < 1 is a constant
depending on k. This bound was obtained using different approaches: critical
clauses [PPZ97, PPSZ98], local search [Sch99], covering codes [DGH+02]. The
proof based on covering codes can be adapted to show that k-SAT has certificates
of length cn (we include this adapted proof for self-containedness).

Another known result on k-SAT is the result by Impagliazzo and Paturi
[IP01] on increasing the time complexity of k-SAT as k grows. They defined the
sequence {sk}k≥3 where

sk = inf{s | k-SAT can be solved by an O(2sn)-time algorithm}.

The conjecture that sk > 0 for all k ≥ 3 is called the Exponential Time Hypothe-
sis (ETH). Note that ETH is stronger than the P 6= NP conjecture. It is shown
in [IP01] that if ETH is true then {sk} increases infinitely often. We define the
sequence {ck}k≥3 by

ck = inf{c | k-SAT has certificates of length cn}

and we show that if ETH is true then {ck} increases infinitely often too. To index
the search space appearing in the proof of [IP01] by certificates of appropriate
length, we use the combinatorial (also called binomial) number system, see e.g.
[Knu05].

It is an intriguing open question whether sk = ck.

Certificate complexity of SAT∆. Using Schuler’s reduction from SAT∆ to k-SAT
[Sch05], it was shown that SAT∆ can be solved in time O(2cn) with c < 1 [CIP06].
We translate this result into the certificate settings: SAT∆ has certificates of
length cn. The combinatorial number system is again used in our proof.



The time complexity of SAT∆ is characterized by the sequence {d∆} where

d∆ = inf{d | SAT∆ can be solved by an O(2dn)-time algorithm}.

It was shown in [CIP06] that this sequence is interwoven with {sk} and thus
s∞ = d∞, where s∞ = limk→∞ sk and d∞ = lim∆→∞ d∆. We characterize the
certificate complexity of SAT∆ by the sequence {b∆}, where

b∆ = inf{b | SAT∆ has certificates of length bn},

and we show that the relationship between the certificate complexities {ck} and
{b∆} is similar to the relationship between the time complexities {sk} and {d∆}.
In particular, limk→∞ ck = lim∆→∞ b∆.

Nondeterministic subexponential time and CircuitSAT. The class SE consists
of all parameterized problems that can be solved in time subexponential in the
parameter [IPZ01]. In Sect. 5, we define the class NSE to be the class of all
parameterized problems that have subexponential-time verifiable certificates of
length bounded by the parameter. Note that there is an analogy between the pair
P versus NP and the pair SE versus NSE. We also define a subexponential-time
reducibility that preserves the certificate length and we observe that

– NSE is closed under this reducibility;
– CircuitSAT with the number of inputs as the parameter is complete for

NSE under this reducibility.

It follows from the completeness of CircuitSAT that if CircuitSAT has certifi-
cates of length cn, where n is the number of inputs and c < 1 is a constant,
then NSE collapses to SE. Therefore, since ETH is a stronger assumption than
SE 6= NSE, ETH also implies that CircuitSAT has no certificates shorter than
the number of inputs.

This observation can be viewed as a certificate offset of recent results on
the time complexity of CircuitSAT. For example, it is shown by Paturi and
Pudlák [PP10] that CircuitSAT cannot be solved by a one-sided probabilistic
polynomial-time algorithm with success probability better than 2−n+o(n) un-
less some unlikely complexity containments hold. On the other hand, Williams
[Wil10] shows that even a slight improvement in the running time over exhaus-
tive search for CircuitSAT implies a proof of NEXP 6⊆ P/poly.

2 Definitions

Definition 1 (parameterized problem, [FG06]). A parameterized problem
is a pair (L, p) consisting of a language L ∈ {0, 1}∗ and a polynomial-time
computable parameterization function p : {0, 1}∗ → N.

Definition 2 (verifier and certificate). A verifier for a parameterized prob-
lem (L, p) is an algorithm V such that

x ∈ L ⇐⇒ ∃w ∈ {0, 1}∗ (|w| ≤ p(x) and V accepts the pair (x,w))

where the string w is called a certificate for x.



Remark 1. In the definition above and throughout the paper, we use the word
“algorithm” to denote a deterministic algorithm. However, all results of the paper
hold if “algorithm” means a randomized algorithm.

Definition 3 (subexponential verification scheme). A subexponential ver-
ification scheme for a parameterized problem (L, p) is a family {Vt}t∈N of verifiers
for (L, p) such that for each verifier Vt, the running time of Vt on (x,w) is

|x|O(1) 2p(x)/t

where the polynomial |x|O(1) may depend on t. If (L, p) has a subexponential
verification scheme, we also say that L has subexponential-time verifiable cer-
tificates of length p.

Remark 2. It would be more common if we defined subexponential verification
schemes as a family of verifiers Vε(x,w) like, for example, the definition of a
family of subexponential reductions (SERF) in [IPZ01]. These two versions are
equivalent, however we prefer the version with 1/t → 0 instead of ε → 0 to avoid
discussions on the representation of ε (especially when it is given as a function
of other parameters).

Remark 3. An important special case of subexponential verification schemes is
the case where all verifiers Vt are the same and each of them runs in time
polynomial in both p and |x|. If so, we say that L has polynomial-time verifiable
certificates of length p. An obvious example of this special case is the polynomial-
time verification for (SAT, n): a certificate for a satisfiable formula is an n-bit
string that encodes a satisfying assignment. Less obvious examples are given in
Theorems 1 and 3 below.

Remark 4. All certificates considered in this paper are verifiable in subexponen-
tial time. To simplify the terminology, we omit the words “subexponential-time
verifiable”. Thus, throughout the paper, when we write “L has certificates of
length p”, this means “L has subexponential-time verifiable certificates of length
p”.

3 Shortest Certificates for k-SAT

The time complexity of k-SAT for k ≥ 3 is characterized by the sequence {sk}k≥3

where

sk = inf{s | k-SAT can be solved by an O(2sn)-time algorithm}.

The current knowledge and open questions about this sequence can be described
as follows:

– We know that sk < 1. More exactly, sk ≤ (1−µ/k) for some constant µ > 0.
This bound is obtained using critical clauses [PPZ97, PPSZ98], local search
[Sch99], covering codes [DGH+02, MS11].



– We do not know whether sk = 0. The conjecture that sk > 0 for all k ≥ 3 is
called the Exponential Time Hypothesis (ETH).

– If ETH holds then {sk} increases infinitely often [IP01].
– Let s∞ = limk→∞ sk. The conjecture that s∞ = 1 is called the Strong Ex-

ponential Time Hypothesis (SETH). The relationship between s∞ and the
complexity of SAT is also unknown, where the complexity of SAT is the min-
imum number s such that SAT can be solved in time 2sn up to a polynomial
in the input size.

The certificate complexity of k-SAT is defined below through a sequence similar
to {sk}.

Definition 4 (certificate complexity for k-SAT). For each k ≥ 3, let

ck = inf{c | k-SAT has certificates of length cn}.

The limit of {ck} as k →∞ is denoted c∞.

Note that sk ≤ ck for all k ≥ 3 and s∞ ≤ c∞.

3.1 Upper bound on certificate length for k-SAT

The following theorem shows that ck < 1 and, moreover, this inequality holds
even for polynomial-time verifiable certificates.

Theorem 1. For each k ≥ 3 and for each ε > 0, k-SAT has polynomial-time
verifiable certificates of length

(
1− lg k+1

k + ε
)
n.

Certificates of the claimed length can be extracted from the algorithm that
solves k-SAT in time O

(
2(1−lg k+1

k +ε)n
)

using covering codes [DGH+02]. Such
a certificate includes the number of the ball containing a satisfying assignment
and the index of this assignment in a search tree inside the ball. Although the
proof essentially repeats that of [DGH+02], we include it here for the sake of
self-containedness.

Proof. Let F be a satisfiable k-CNF formula over n variables. We show that a
satisfying assignment for F can be encoded using less than n bits. Each assign-
ment for F is identified with a point in the Boolean cube {0, 1}n. The first step
of the encoding is to cover the cube with Hamming balls of radius ρn, where a
value for ρ will be chosen later. It is known that any such covering must contain
at least 2(1−H(ρ))n balls, where H is the binary entropy function. An “almost”
optimal covering (with at most 2(1−H(ρ)+ε)n balls for any ε > 0) is constructed
in [DGH+02] as follows.

The centers of the balls are viewed as a covering code for the cube. For any
ε > 0, we need a covering code of radius ρn that contains at most 2(1−H(ρ)+ε)n

codewords. Consider a partition of n bits into n/b blocks of size b, where b is
a constant (without loss of generality, we can assume that n is divisible by b
and n is sufficiently large). Using a brute-force enumeration, we can find an



optimal covering code of radius ρb for each block. Let C = {w1, . . . , wM} be
such a code, where M is at most 2(1−H(ρ))b up to a polynomial in b. The direct
sum of n/b copies of C is a covering code of radius ρn for the cube. It is easy
to see that given ρ and ε, a value for b can chosen such that this direct sum
(denoted Cn/b) has at most 2(1−H(ρ)+ε)n codewords. We encode each codeword
wi ∈ C by an integer i. Then each codeword in Cn/b can be encoded by a
concatenation of n/b integers from 1 to M each. The length of this encoding is
at most (1−H(ρ)+ε)n. Moreover, given such a concatenation, the corresponding
codeword (or, equivalently, the corresponding ball center) can be computed in
time polynomial in n.

Assume that F has a satisfying assignment in a ball of radius ρn centered at
an assignment A. Then the encoding of A (with at most (1−H(ρ) + ε)n bits) is
the first part of a certificate for F . To construct the second part, we again refer
to [DGH+02] where it is shown how to search for a satisfying assignment inside a
ball. This search is essentially a recursive procedure that modifies F and A using
the following approach: if the current assignment α does not satisfy the current
formula φ, take the first unsatisfied clause l1 ∨ . . . ∨ lh in φ and consider pairs
(φ1, α1), . . . , (φh, αh) where each αi is obtained from α by flipping the value of
the literal li and each φi is obtained from φ by substituting the new value for li
in φ. This procedure starts with (F,A) and builds a recursion tree T of depth at
most ρn. Since F is a k-CNF formula, the degree of each node in T is at most
k. At least one leaf in T is a pair (φ, α) where α satisfies φ. Hence, α satisfies F .

Thus, a satisfying assignment α in a ball of radius ρn centered at A can be
encoded by a path from the root to a leaf in T . Such a path is determined by
a sequence of literals chosen in unsatisfied clauses. If we choose a literal li in a
clause l1 ∨ . . . ∨ lh, we encode this choice by the integer i. The entire path can
thus be encoded by a sequence of integers i1, . . . , ibρnc where 1 ≤ ij ≤ k for each
j. Removing the leading 1s in binary representation of these integers, we encode
the path by a concatenation of bρnc bit strings of length blg kc each.

Finally, a certificate for F is a pair, where the first element encodes the center
of a ball containing a satisfying assignment and the second element encodes a
path in T . For any ε, the total length of this certificate is at most (1 −H(ρ) +
ε)n + ρn lg k. Taking ρ = 1/(k + 1), we have:

(1−H(ρ) + ε)n + ρn lg k =
(

1− lg
k + 1

k
+ ε

)
n.

To verify it polynomial time, just compute the center A of the ball from a
given index and use a given path to modify A to a satisfying assignment. ut

3.2 The growth of certificate lengths for k-SAT

It is proved in [IP01] that ETH implies the following relationship between sk

and s∞:
sk ≤ s∞(1− σ/(ek)), (1)

where σ is the solution of H(σ) = s∞/2 on (0; 1/2]. Therefore, if ETH holds
then {sk} increases infinitely often. We prove a similar result for {ck}.



Theorem 2. If ETH holds then

ck ≤ c∞(1− γ/(ek)) (2)

where γ is the solution of H(γ) = c∞/2 on (0; 1/2].

This theorem is proved using the following lemma from [IP01]:

Lemma 1 ([IP01]). Let F be a formula in k-CNF such that F is not satisfiable
by any assignment of weight3 at most δn. For any ε > 0, there exists k′ such
that the following holds: The satisfiability of F is equivalent to the satisfiability
of the disjunction F1 ∨ . . . ∨ FN , where N ≤ 2εn and each Fi is a formula in
k′-CNF on at most n(1 − δ/(ek)) variables. Moreover, this disjunction can be
computed from F in time nO(1) 2εn.

Proof (of Theorem 2). We mimic the proof of inequality (1) in [IP01]. The proof
shows how to construct an O(2cn)-time algorithm for k-SAT using an O(2c′n)-
time algorithm for k′-SAT for certain k′ > k and c′ > c. We must make sure that
the decrease in the running time is accompanied by the decrease in the length
of a certificate verifiable in subexponential time.

The algorithm constructed in [IP01] tests satisfiability of a given k-CNF
formula F as follows (here ε > 0 and w = bσnc):

1. Use exhaustive search to check all assignments of weight at most w. If at
least one of them satisfies F , return “satisfiable”.

2. Apply Lemma 1 (with δ = w/n) to obtain k′-CNF formulas F1, . . . , FN on
at most n(1− w/(ekn)) variables each, where N ≤ 2εn.

3. Apply a k′-SAT algorithm to Fi’s; if at least one of them is satisfiable, return
“satisfiable”; otherwise return “unsatisfiable”.

In the certificate settings, we take w = bγnc and we bound the length of
certificates considering two cases: the case of a satisfying assignment of low
weight (≤ w), and the case of application of Lemma 1.

1. If F is satisfied by an assignment of weight at most w then F has a certificate
of length ⌈

lg
(

n

w

)⌉
+ O(lg n).

Such a certificate can be obtained using the combinatorial (also called bino-
mial) number system, see e.g. [Knu05].
(a) Consider the lexicographic order of all assignments (n-bit strings) of

weight exactly w and consider the numbering of assignments in this list
by numbers from 0 to

(
n
w

)
−1. Let A be an assignment with 1s on positions

n > aw > . . . > a1 ≥ 0 and 0s on all other positions. We encode A by

3 An assignment is identified with a bit string; the weight of an assignment is the
number of 1s in the string.



its number NA in the lexicographic order, where NA can be computed
as the following sum:

NA =
(

aw

w

)
+ . . . +

(
a1

1

)
.

Obviously, the decoding can be done efficiently: first, find aw, then pro-
ceed to lower terms.

(b) To encode an assignment of weight w − i, we first encode i and then
append the number (

aw−i

w − i

)
+ . . . +

(
a1

1

)
.

The encoding of i has length O(lg n) if we encode i as follows: 1 . . . 10〈i〉
where 〈i〉 is i written in binary and the number of 1s is equal to the
length of the binary representation of i.

2. In the case of application of Lemma 1, we specify the index i of the first
satisfiable formula Fi by dεne bits. The formula itself can be found by running
the procedure in Lemma 1, which takes time 2εnnO(1). These dεne bits are
appended with the the certificate for Fi. By definition of ck′ , its length is
bounded by (ck′ + ε) times the number of variables in Fi. Finally, we put
leading 0 on top of all that to indicate that this is the case of application of
Lemma 1.

In total, we have the following upper bound on the certificate length:

max{dlg
(

n
w

)
e+ O(lg n), 1 + dεne+ (ck′ + ε)dn(1− w/(ekn))e} =

n ·max{H(w/n), ck′(1− w/(ekn)) + 2ε}+ O(1) =
n ·max{c∞/2, c∞(1− γ/(ek)) + 2ε}+ O(1) =
n · (c∞(1− γ/(ek)) + 2ε) + O(1).

ut

Corollary 1. If ETH holds then the sequence {ck} increases infinitely often as
k grows.

Proof. Straightforwardly follows from (2). ut

4 Shortest Certificates for SAT∆

The clause density of a CNF formula with m clauses over n variables is the ratio
m/n. For any positive constant ∆, we write SAT∆ to denote the restriction of
SAT to formulas whose clause density is at most ∆.

Lemma 2. For each ∆ > 0, k ≥ 3, and c > 0, if k-SAT has (polynomial-time
verifiable) certificates of length cn then SAT∆ has (polynomial-time verifiable)
certificates of length (

c +
(∆ + 1/k) lg e

2ck

)
n + o(n).



Proof. Let F be a satisfiable formula in CNF with m/n ≤ ∆. We build a certifi-
cate for F using Schuler’s reduction [Sch05] which transforms any CNF formula
into an equivalent disjunction of an exponential number of k-CNF formulas. This
reduction can be represented as a labeled binary tree in which the root is labeled
by F and the leaves are labeled by k-CNF formulas [CIP06]. Any path from the
root to a leaf is given by a sequence of choices:

– either choose a left branch where a clause is reduced to a k-clause;
– or choose a right branch where the number of variables is decreased by k

variables.

The maximum number of branchings to the left is m; the maximum number of
branchings to the right is n/k (without loss of generality we can assume that n
is divisible by k).

Consider a path from the root to a leaf such that the path contains exactly r
branchings to the right. Then the k-CNF formula at the leaf has n−kr variables.
Let Pr be the set of all such paths. Any path in Pr can be identified with a bit
string of length m + n/k that has exactly r ones. We encode these strings using
the combinatorial number system [Knu05], like we encoded assignments of fixed
weight in the proof of Theorem 2. Then any path in Pr is encoded by a bit string
of length ⌊

lg
(

m + n/k

r

)⌋
+ 1

and the decoding can be done in polynomial time.
Given a path from the root to a leaf, the k-CNF formula at this leaf can be

computed in time polynomial in the size of F . Therefore, a certificate for F is a
path to a leaf L labeled by a satisfiable k-CNF formula FL plus a certificate for
FL. If the path to L has r branchings to the right then a certificate for F can
be defined as the concatenation of the following three strings:

– the encoding of the integer r with blg(n/k)c+ 1 bits;
– the encoding of the path to L with blg

(
m+n/k

r

)
c+ 1 bits;

– the encoding of a certificate for FL with bc(n− kr)c+ 1 bits.

Now we show

lg(n/k) + lg
(

m + n/k

r

)
+ c(n− kr) ≤

(
c +

(∆ + 1/k) lg e

2ck

)
n + o(n).

Since the first term in the left-hand side is sublinear, it suffices to upper bound
the sum of the other two terms. We estimate it using the same way as in [CIP06]:

lg
(
m+n/k

r

)
+ c(n− kr) ≤ lg

(∑m+n/k
r=0

(
m+n/k

r

)
2c(n−kr)

)
≤ lg

(
2cn

(
1 + 2−ck

)m+n/k
)

≤ cn + (m + n/k) lg
(
e2−ck

)
≤ cn + (m+n/k) lg e

2ck

≤
(
c + (∆+1/k) lg e

2ck

)
n.



Given a certificate described above, the verification of satisfiability of F con-
sists of two steps. The first step is to decode the certificate into a k-CNF formula
G and a certificate of satisfiability of G. This can be done in polynomial time.
The second step is to verify satisfiability of G. If a certificate for G is verifiable
in polynomial time then this step can also be done in polynomial time. ut

Theorem 3. For each ∆ > 0, there exists b < 1 such that SAT∆ has polynomial-
time verifiable certificates of length bn.

Proof. We apply Lemma 2 choosing k and c such that

c +
(∆ + 1/k) lg e

2ck
< 1.

Namely, if c = 1− lg(1 + 1/k) + ε for some ε > 0 (Theorem 1) then

(∆ + 1/k) lg e

2ck
≤ O(∆)

2k
.

Now if we take k = r lg(∆ + 2), where r is a sufficiently large constant, we have

c + (∆+1/k) lg e
2ck ≤ 1− lg

(
1 + 1

r lg(∆+2)

)
+ ε + O(∆)

2r lg(∆+2)

≤ 1− O(1)
r lg(∆+2) + ε + O(1)

(∆+2)r−1 < 1.

ut

Without loss of generality, we can assume that the clause density ∆ is a
positive integer. Then, similarly to the case of k-SAT, the time complexity of
SAT∆ is characterized by the sequence {d∆}∆≥1 where

d∆ = inf{d | SAT∆ can be solved by an O(2dn)-time algorithm}.

It is known that d∆ < 1 for all ∆. More exactly, SAT can be solved in
time 2(1−1/O(lg ∆))n up to a factor polynomial in the size of the input formula
[CIP06, DH09]. It is also known that {d∆} is interwoven with {sk}. Namely, as
shown in [CIP06],

– for any k and for any ε > 0, there exists ∆ such that sk ≤ d∆ + ε;
– for any ∆ and for any ε > 0, there exists k such that d∆ ≤ sk + ε.

Therefore, s∞ = d∞ where d∞ = lim∆→∞ d∆.
We define an analog of {d∆} in the certificate settings and show a similarity

between the two sequences.

Definition 5 (certificate complexities for SAT∆). For each ∆ ≥ 1, let

b∆ = inf{b | SAT∆ has certificates of length bn}.

Similarly to d∞, we define b∞ = lim∆→∞ b∆.



Lemma 3. For each ∆ > 0 and ε > 0, there exists k such that b∆ ≤ ck + ε.

Proof. Consider two cases: c∞ > 0 and c∞ = 0. In the case of c∞ > 0, we apply
Lemma 2 with k such that ck > 0. Then we have

b∆ ≤ ck +
(∆ + 1/k) lg e

2ckk
+ o(1)

for each ∆ > 0. Taking k sufficiently large, we can make the fraction in the right-
hand side arbitrarily small. If c∞ = 0, we can apply Lemma 2 with arbitrarily
small c > 0. In particular, if we take c as a function of k such that ck → ∞ as
k →∞, we can make the right-hand side arbitrarily small. Hence b∆ = 0 in this
case. ut

Corollary 2. b∞ ≤ c∞

Proof. Take ∆, k →∞ and ε → 0. ut

Lemma 4 (Sparsification Lemma, [IPZ01]). Let F be a formula in k-CNF.
There is a function f(k, ε) upper bounded by a polynomial in 1

ε such that for any
ε > 0, the satisfiability of F is equivalent to the satisfiability of the disjunction
F1 ∨ . . . ∨ FN over the same set of variables, where N ≤ 2εn and each Fi is a
k-CNF formula in which every variable occurs at most f(k, ε) times. Moreover,
this disjunction can be computed from F in time nO(1) 2εn.

Lemma 5. For any k ≥ 3 and for any ε > 0, we have ck ≤ b∞ + ε.

Proof. Similarly to [CIP06, Corollary 2], the proof proceeds by application of
Lemma 4. Given k ≥ 3 and ε > 0, we show that k-SAT has certificates of length
(b∞+ε)n. Namely, we construct a subexponential verification scheme {Vt}, where
each verifier Vt runs in time

|F |O(1) 2(b∞+ε)n/t (3)

where |F | is the size of the input k-CNF formula F .
Each Vt starts with sparsifying F by Lemma 4. The parameter of the spar-

sification procedure is chosen so that the procedure runs in time

|F |O(1) 2(b∞+ε)n/2t.

Let ∆ = ∆(k, ε) be the maximum clause density of the formulas F1, . . . , Fs

returned by the sparsification procedure. The input string w for Vt is interpreted
as a certificate of satisfiability for some Fj . Therefore, Vt tests each formula
Fi: whether w is a certificate for Fi. This test is done using a subexponential
verification scheme {Ut} for (SAT∆, b∆ +ε). More exactly, the verifier Vt uses U2t

and, thus, the test of Fi runs in time

|F |O(1) 2(b∆+ε)n/2t.

Since b∆ ≤ b∞, the overall running time of Vt is (3). ut



Corollary 3. c∞ ≤ b∞

Proof. Take k →∞ and ε → 0. ut

Theorem 4. c∞ = b∞

Proof. Corollaries 2 and 3. ut

Theorem 5. If ETH holds then the sequence {b∆} of certificate complexities
for SAT∆ increases infinitely often.

Proof. Suppose that b∆0 = b∞ for some ∆0. Then, by Lemma 3, there exists k0

such ck0 ≥ b∞. Since b∞ = c∞ and {ck} is nondecreasing, we have ck = c∞ for
all k ≥ k0, which contradicts Theorem 2. ut

5 Shortest Certificates for CircuitSAT

Definition 6 (subexponential time). We say that a parameterized problem
(L, p) can be solved in subexponential time if for any t ∈ N, there exists an algo-
rithm that decides L in time |x|O(1) 2p(x)/t, where x is an instance. The class SE
consists of all parameterized problems (L, p) that can be solved in subexponential
time.

Definition 7 (nondeterministic subexponential time). The class NSE
consists of all parameterized problems (L, p) that have subexponential verifica-
tion schemes.

Remark 5. Note that NSE is to SE as NP is to P: the larger class requires a
verifiable certificate to accept a “yes” instance. There are two differences:

– subexponential time versus polynomial time;
– the bound |w| ≤ p(x) on the certificate length in the case of parameter-

ized problems (L, p) ∈ NSE versus the bound |w| ≤ |x|O(1) in the case of
problems in NP.

The class SE is closed under reducibility defined in [IPZ01] and called subex-
ponential reduction families (SERFs for short). Informally, a SERF from (L, p)
to (L′, p′) is a collection of Turing reductions Rt from L to L′ such that each
reduction runs in time |x|O(1) 2p(x)/t and allows at most a linear increase of the
parameter. We define a “strict” version of SERFs under which NSE is closed.

Definition 8 (strict SERF). We say that R is a strict subexponential reduc-
tion family (strict SERF) from a parameterized problem (L, p) to a parameterized
problem (L′, p′) if R is a sequence of algorithms Rt such that

– each algorithm Rt takes a string x ∈ {0, 1}∗ as input and outputs strings
y1, . . . , ym, where m ≤ 2p(x)/t;

– each Rt runs in time |x|O(1) 2p(x)/t;
– p′(yi) ≤ p(x) for all 1 ≤ i ≤ m;



– for every x ∈ {0, 1}∗, we have

x ∈ L ⇐⇒
∨

1≤i≤m

(yi ∈ L′).

Remark 6. A strict SERF is a special case of a SERF, where the word “strict”
alludes to two refinements:

– a strict SERF is a disjunctive truth table reduction, while a SERF is a Turing
reduction;

– a strict SERF does not increase the parameter, while a SERF allows multi-
plying the parameter by an arbitrary constant.

Note also that if we allowed a slight increase of the parameter

p′(yi) ≤ p(x) + o(p(x)),

we would have an equivalent definition.

Theorem 6. NSE is closed under strict SERFs: if (L, p) has a strict SERF to
(L′, p′) ∈ NSE, then (L, p) ∈ NSE.

Proof. A certificate for x is a certificate for a yi such that yi ∈ L′. The verification
of this certificate includes generating y1, . . . , ym with checking each of them:
whether the given certificate is a certificate for yj . ut

Theorem 7. CircuitSAT with the number of inputs as the parameter is com-
plete for NSE under strict SERFs.

Proof. Consider (L, p) ∈ NSE. Let t ∈ N. Consider a Turing machine that
verifies certificates of length p(x) in time |x|O(1) 2p(x)/2t. It is well-known that the
machine can be transformed into a circuit with p(x) inputs (after hardwiring a
specific x) and size polynomial in the length of the machine’s input and quadratic
in the running time. The reduction Rt outputs this circuit. ut

Corollary 4. If CircuitSAT has certificates of length cn, where n is the number
of inputs and c < 1 is a constant, then SE = NSE.

Proof. Suppose that CircuitSAT has certificates of length cn. We show that if
(L, p) ∈ NSE then (L, p) ∈ SE. Since (L, p) has a strict SERF to CircuitSAT
with p inputs, L has certificates of length cp. That is, (L, cp) ∈ NSE and there-
fore (L, cp) has a strict SERF to CircuitSAT with cp inputs. Using the supposi-
tion again, we obtain (L, c2p) ∈ NSE. Continuing, we can conclude that L has
certificates of arbitrarily small length. Hence, L can be solved in subexponential
time. ut

Remark 7. It follows from Corollary 4 that if ETH is true then there is no
constant c < 1 such that CircuitSAT has certificates of length cn. Indeed,
(3-SAT, n) ∈ NSE where n is the number of variables. However, if ETH is true
then (3-SAT, n) /∈ SE, i.e., ETH implies SE 6= NSE.
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