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Abstract. In the first part of this work (FSTTCS’10) we have shown that the sat-
isfiability of CNF formulas with β-acyclic hypergraphs can be decided in poly-
nomial time. In this paper we continue and extend this work. The decision algo-
rithm for β-acyclic formulas is based on a special type of Davis-Putnam resolu-
tion where each resolvent is a subset of a parent clause. We generalize the class of
β-acyclic formulas to more general CNF formulas for which this type of Davis-
Putnam resolution still applies. We then compare the class of β-acyclic formulas
and this superclass with a number of known polynomial formula classes.

1 Introduction

We continue our study [12] of the SATISFIABILITY (SAT) problem on classes of CNF
formulas (formulas in Conjunctive Normal Form) with restrictions on their associated
hypergraphs, which are obtained from these formulas by ignoring negations and con-
sidering clauses as hyperedges on variables.

Because many computationally hard problems can be solved efficiently on acyclic
instances, it is a natural to consider SAT for CNF formulas with acyclic hypergraphs.
There are several notions of acyclicity for hypergraphs as described by Fagin [6]: α-
acyclicity, β-acyclicity, γ-acyclicity, and Berge-acyclicity, which are strictly ordered
with respect to their generality, i.e., we have

α-ACYC ) β-ACYC ) γ-ACYC ) Berge-ACYC

where X -ACYC denotes the class of X-acyclic hypergraphs, which are in 1-to-1 corre-
spondence to a class of CNF formulas called X-acyclic formulas. It is known that SAT
is NP-complete for α-acyclic formulas [13], and that Berge-ACYC-SAT is solvable in
polynomial time [7, 13]. In a recent paper [12] we completed the complexity classifi-
cation of these four classes by showing that SAT can be solved in polynomial time for
β-acyclic formulas, and consequently, for γ-acyclic formulas as well.

New results. The first aim of our paper is to generalize our polynomial-time algorithm
for β-acyclic formulas [12]. This algorithm is based on the so-called Davis-Putnam Pro-
cedure [5], which successively eliminates variables using Davis-Putnam Resolution. In
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general, this procedure is not efficient, because the number of clauses may increase
after each application of Davis-Putnam Resolution. However, the special structure of
β-acyclic formulas allows us to compute an elimination ordering of the variables, such
that this does not happen. Hence, we can solve SAT in polynomial time for β-acyclic
formulas. In fact, the elimination ordering produced this way has the special property
that each obtained resolvent is a subset of a parent clause. This type of resolution is
known as subsumption resolution [11]. In Section 3 we show that there are CNF for-
mulas that are not β-acyclic but that still admit an elimination ordering of their variables
based on subsumption resolution, such that the Davis-Putnam procedure takes polyno-
mial time. We call such an elimination ordering DP-simplicial. This leads to a new
class DPS of CNF formulas that contains the class of β-acyclic formulas. In Section 4,
we show that testing membership in this class is an NP-complete problem. The reason
for the NP-hardness is that a formula may have several so-called DP-simplicial vari-
ables, one of which must be chosen to be eliminated but we do not know which one. In
Section 5, we show how to work around this obstacle to some extent, i.e., we identify a
subclass of DPS that is a proper superclass of the class of β-acyclic formulas for which
SAT is polynomial-time solvable.

The second aim of our paper is to make a comparison between the class of β-acyclic
formulas and other known polynomial classes of CNF formulas. We do this in Sec-
tion 6, and our results show that the class of β-acyclic formulas is incomparable with
all considered classes. Hence, β-acyclic formulas form a new “island of tractability”
for SAT.

2 Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable x or a
negated variable x; if y = x is a literal, then we write y = x. For a set S of literals
we put S = {x | x ∈ S }; S is tautological if S ∩ S 6= ∅. A clause is a finite non-
tautological set of literals. A finite set of clauses is a CNF formula (or formula, for
short). A variable x occurs in a clause C if x ∈ C ∪ C; var(C) denotes the set of
variables which occur in C. A variable x occurs in a formula F if it occurs in one of its
clauses, and we put var(F ) =

⋃
C∈F var(C).

Let F be a formula and X ⊆ var(F ). A truth assignment is a mapping τ : X →
{ 0, 1 } defined on some set X of variables; we write var(τ) = X . For x ∈ var(τ) we
define τ(x) = 1 − τ(x). A truth assignment τ satisfies a clause C if C contains some
literal x with τ(x) = 1; τ satisfies a formula F if it satisfies all clauses of F . A formula
is satisfiable if it is satisfied by some truth assignment; otherwise it is unsatisfiable.
Two formulas F and F ′ are equisatisfiable if either both are satisfiable or both are
unsatisfiable. The SATISFIABILITY (SAT) problem asks whether a given CNF formula
is satisfiable.

Let C,D be two clauses such that C ∩ D = {x} for a variable x. The clause
(C ∪D) \ {x, x} is called the x-resolvent (or resolvent) of C and D; the clauses C and
D are called parent clauses of the x-resolvent. Note that by definition any two clauses
have at most one resolvent. Let F be a formula. A sequence C1, . . . , Cn is a resolution
derivation of Cn from F if every Ci is either in F or the resolvent of two clauses Cj



and Cj′ for some 1 ≤ j < j′ ≤ i − 1. The derivation is minimal if we cannot delete a
clause from it and still have a resolution derivation of Cn from F . We call a clause Cn
a resolution descendant of a clause C1 ∈ F if there is a minimal resolution derivation
C1, . . . , Cn of Cn from F .

Consider a formula F and a variable x of F . Let DPx(F ) denote the formula ob-
tained from F after adding all possible x-resolvents and removing all clauses in which
x occurs. We say that DPx(F ) is obtained from F by Davis-Putnam Resolution, and
that we eliminated x. It is well known (and easy to show) that F and DPx(F ) are
equisatisfiable.

For an ordered sequence of variables x1, . . . , xk of F , we set DPx1,...,xk
(F ) =

DPxk
(· · · (DPx1(F )) · · · ) and DP∅(F ) = F . The Davis-Putnam Procedure [5] con-

siders an ordering of the variables x1, . . . , xn of a formula F and checks whether
DPx1,...,xn

(F ) is empty or contains the empty clause. In the first case F is satisfiable,
and in the second case F is unsatisfiable. However, DPx(F ) contains in general more
clauses than F . Hence, repeated application of Davis-Putnam Resolution to F may
cause an exponential growth in the number of clauses. As a result, the Davis-Putnam
Procedure has an exponential worst-case running time.

3 Generalizing β-Acyclic Formulas

A hypergraph H is a pair (V,E) where V is the set of vertices and E is the set of
hyperedges, which are subsets of V . A hypergraph is α-acyclic if it can be reduced to
the empty hypergraph (∅, ∅) by repeated application of the following reduction rules:

1. Remove hyperedges that are empty or contained in other hyperedges.
2. Remove vertices that appear in at most one hyperedge.

A hypergraph H is β-acyclic if it is α-acyclic and remains α-acyclic after removing
an arbitrary number of hyperedges. Thus β-acyclicity is the hereditary variant of α-
acyclicity. The hypergraph H(F ) of a formula F has vertex set var(F ) and hyperedge
set { var(C) | C ∈ F }. We say that F is α-acyclic or β-acyclic ifH(F ) is α-acyclic or
β-acyclic, respectively. It is known that SAT is NP-complete for the class of α-acyclic
formulas [13]. However, β-acyclicity makes SAT polynomial.

Theorem 1 ([12]) SAT can be solved in polynomial time for β-acyclic formulas.

The proof of Theorem 1 is based on the following [12]. A vertex x of a hypergraph
H is weakly simplicial if the hyperedges of H that contain x form a chain under set
inclusion. A nontrivial β-acyclic hypergraph always contains a weakly simplicial ver-
tex. After deletion of this vertex the hypergraph remains β-acyclic. Thus, by repeated
deletion of weakly simplicial vertices we can eliminate all vertices of a β-acyclic hy-
pergraph, producing a weakly simplicial elimination ordering of its vertices. Because
we can find a weakly simplicial vertex in polynomial time, we can compute a weakly
simplicial elimination ordering for a β-acyclic hypergraph in polynomial time. Once
we have this ordering, we apply the Davis-Putnam procedure. This results in a sequence
of formulas with a non-increasing number of clauses. As such, the Davis-Putnam pro-
cedure runs in polynomial time. Consequently, Theorem 1 holds.



Besides that it is possible to identify a “suitable” vertex in polynomial time, the
other key observation in the proof of Theorem 1 is that the number of clauses must
not increase by applying Davis-Putnam resolution. We can ensure this by requiring
the following property that is more general than being weakly simplicial. Let F be a
formula. We say that a variable x ∈ var(F ) is DP-simplicial in F if

(*) for any two clauses C,D ∈ F that have an x-resolvent, this x-resolvent is a subset
of C or a subset of D.

We observe that whenever an x-resolvent is a subset of a parent clause C then it is
equal to C \ {x, x}. If x is DP-simplicial in F , then |DPx(F )| ≤ |F |, as desired.
An ordering x1, . . . , xn of the variables of F is a DP-simplicial elimination ordering
if xi is DP-simplicial in DPx1,...,xi−1(F ) for all 1 ≤ i ≤ n. We let DPS denote the
class of all formulas that admit a DP-simplicial elimination ordering, and we let BAC
denote the class of all β-acyclic formulas. We observe that every weakly simplicial
elimination ordering ofH(F ) is a DP-simplicial elimination ordering of F . This means
that BAC ⊆ DPS. However, due to Example 3.1, the reverse is not true. Hence, DPS is
a proper superclass of BAC.

Given an DP-simplicial ordering, the Davis-Putnam procedure runs in polynomial
time. Hence we obtain the following result.

Proposition 1 Let F ∈ DPS. If a DP-simplicial elimination ordering of the variables
in var(F ) is given, then SAT can be solved in polynomial time for F .

In fact, if a DP-simplicial elimination ordering of the variables in var(F ) is given,
we can even compute a certificate for the (un)satisfiability of F in polynomial time.
This holds, because we can obtain a satisfying truth assignment of F from a satisfying
truth assignment of DPx(F ), and we can obtain a resolution refutation of F from a
resolution refutation of DPx(F ).

3.1 An Example

We give an example of a formula in DPS \ BAC. Consider the formula F that has
variables y, z, b, b′, b∗ and c and clauses {y, z, b, b′}, {y, z, b, b∗}, {y, b}, {y, b}, {z, b},
{z, b}, {y, b, b∗, c}, {y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗} and {b, b′}.

We observe first that none of the variables of F are weakly simplicial. Conse-
quently, there is no weakly simplicial elimination ordering of F . Hence F /∈ BAC.
However, we will show below that y, b, b′, b∗, c, z is a DP-simplicial elimination order-
ing of F . Then F ∈ DPS, as desired.

We find that y is DP-simplicial in F and obtain DPy(F ) = {{z, b, b′}, {z, b, b∗},
{z, b}, {z, b}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. We then find that b
is DP-simplicial in DPy(F ) and obtain DPy,b(F ) = {{b′, b∗}, {b∗, b′}, {c, b′, b∗},
{c, b′, b∗}}. We then find that b′ is DP-simplicial in DPy,b(F ) and obtain DPy,b,b′(F ) =
{{c, b′, b∗}, {c, b′, b∗}}. We then find that b∗ is DP-simplicial in DPy,b,b′(F ) and ob-
tain DPy,b,b′,b∗(F ) = ∅. Hence, y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F .



We note that z is also DP-simplicial in F . Suppose that we started with z instead
of y. We first derive that DPz(F ) = {{y, b, b′}, {y, b, b∗}, {y, b}, {y, b}, {y, b, b∗, c},
{y, b, b′, c}, {b′, b∗}, {b∗, b′}, {c, b′, b∗}, {c, b′, b∗}, {b, b′}}. In contrast to DPy(F ),
the clauses {y, b, b∗, c} and {y, b, b′, c} are still contained in DPz(F ). This implies
that DPz(F ) has no DP-simplicial variables. Consequently, F has no DP-simplicial
elimination ordering that starts with z.

We conclude that in contrast to weakly simplicial elimination orderings it is impor-
tant to choose the right variable when we want to obtain a DP-simplicial elimination
ordering. In the next section we will extend this consideration and show that making
the right choice is in fact an NP-hard problem.

4 The NP-Completeness Result

We prove that the problem of testing whether a given CNF formula belongs to the
class DPS, i.e., admits a DP-simplicial elimination ordering, is NP-complete. This
problem is in NP, because we can check in polynomial time whether an ordering of the
variables of a CNF formula is a DP-simplicial elimination ordering. In order to show
NP-hardness we reduce from SATISFIABILITY. In Section 4.1 we construct a CNF
formula F ′ from a given CNF formula F . We also show a number of properties of F ′.
In Section 4.2 we use these properties to prove that F is satisfiable if and only if F ′

admits a DP-simplicial elimination ordering.

4.1 The Gadget and its Properties

For a given CNF formula F with variables x1, . . . , xn called the x-variables and clauses
C1, . . . , Cm, we construct a CNF formula F ′ as follows. For every xi we introduce two
variables yi and zi. We call these variables the y-variables and z-variables, respectively.
For every Cj we introduce a variable cj . We call these variables the c-variables. We
also add three new variables b, b′ and b∗ called the b-variables. We let var(F ′) consist
of all b-variables, c-variables, y-variables, and z-variables.

Let Cj be a clause of F . We replace every x-variable in C by its associated y-
variable if the occurrence of x in C is positive; otherwise we replace it by its associated
z-variable. This yields a clause Dj . For instance, if Cj = {x1, x2, x3} then Dj =
{y1, z2, y3}.

We let F ′ consist of the following 6n+ 4m+ 3 clauses:

• {yi, b} and {yi, b} for i = 1, . . . , n called by-clauses

• {zi, b} and {zi, b} for i = 1, . . . , n called bz-clauses

• {yi, zi, b, b′} and {yi, zi, b, b∗} for i = 1, . . . , n called byz-clauses

• {cj , b′, b∗} and {cj , b′, b∗} for j = 1, . . . ,m called bc-clauses

• Dj∪{b, b∗, cj}∪{ ck | k 6= j } andDj∪{b, b′, cj}∪{ ck | k 6= j } for j = 1, . . . ,m
called bcD-clauses

• {b, b′}, {b′, b∗} and {b′, b∗} called b-clauses.



We call a pair Dj ∪ {b, b∗, cj} ∪ { ck | k 6= j } and Dj ∪ {b, b′, cj} ∪ { ck | k 6= j }
for some 1 ≤ j ≤ m a bcD-clause pair. We call a CNF formula M a yz-reduction
formula of F ′ if there exists a sequence of variables v1, . . . , vk, where every vi is either
a y-variable or a z-variable, such that DPv1,...,vk(F ′) = M , and vi is DP-simplicial in
DPv1,...,vi−1(F ′) for i = 1, . . . , k. We say that two clauses C and D violate (*) if they
have a resolvent that is neither a subset of C nor a subset of D, i.e., C ∩D = {v} for
some variable v but neither (C∪D)\{v, v} = C \{v} nor (C∪D)\{v, v} = D\{v}.
We will now prove five useful lemmas valid for yz-reduction formulas.

Lemma 1 Let M be a yz-reduction formula of F ′. If M contains both clauses of some
bcD-clause pair, then no b-variable and no c-variable is DP-simplicial in M .

Proof. LetE1 = Dj∪{b, b∗, cj}∪{ ck | k 6= j } andE2 = Dj∪{b, b′, cj}∪{ ck | k 6=
j } for some 1 ≤ j ≤ m be a bcD-clause pair in M . We observe that by definition M
contains all b-clauses and bc-clauses. This enables us to prove the lemma. Let v be a
b-variable or c-variable. Then we must distinguish 5 cases. If v = b, then {b, b′} and
E1 violate (*). If v = b′, then {b′, b∗} and E2 violate (*). If v = b∗, then {b′, b∗}
and E1 violate (*). If v = cj , then {cj , b′, b∗} and E1 violate (*). If v = ck for some
1 ≤ k ≤ m with k 6= j, then {ck, b′, b∗} and E1 violate (*). ut

Lemma 2 Let M be a yz-reduction formula of F ′. Then yi ∈ var(M) or zi ∈ var(M)
for i = 1, . . . , n.

Proof. Suppose thatM does not contain yi or zi for some 1 ≤ i ≤ m, say yi /∈ var(M).
We show that zi ∈ var(M). Let M ′ be the formula obtained from F ′ just before
the elimination of yi. Because M is a yz-reduction formula, M ′ is a yz-reduction
formula as well. Hence, var(M ′) contains all b-variables. Because yi and zi are in
var(M ′), we then find that M ′ contains the clauses {yi, zi, b, b′}, {yi, b}, {yi, zi, b, b∗}
and {yi, b}. Because the first two clauses resolve into {zi, b, b′}, and the last two re-
solve into {zi, b, b∗}, we obtain that DPyi

(M ′) contains {zi, b, b′} and {zi, b, b∗}, which
violate (*). Because M contains all b-variables by definition, zi will never become DP-
simplicial when we process DPyi

(M ′) until we obtain M . Hence, zi ∈ var(M), as
desired. ut

Lemma 3 Let M be a yz-reduction formula of F ′, and let 1 ≤ j ≤ m. If there is a
variable that occurs in Dj but not in M , then M neither contains Dj ∪ {b, b∗, cj} ∪
{ ck | k 6= j } nor Dj ∪ {b, b′, cj} ∪ { ck | k 6= j } nor their resolution descendants.

Proof. Let v be a variable that occurs in Dj but not in M . We may assume without loss
of generality that v is the first variable inDj that got eliminated and that v = yi for some
1 ≤ i ≤ n. Let S be the set that consists of all clausesDj′∪{b, b∗, cj′}∪{ ck | k 6= j′ }
and Dj′ ∪ {b, b′, cj′} ∪ { ck | k 6= j′ } in which yi occurs.

Let M ′ be the formula obtained from F ′ just before the elimination of yi. Because
M is a yz-reduction formula, M ′ is a yz-reduction formula as well. Hence, by defini-
tion, all b-variables and all c-variables occur in M ′. Then the clauses in M ′, in which
yi occurs, are {yi, b}, {yi, b}, {yi, zi, b, b′},{yi, zi, b, b∗}, together with clauses that are



either from S or a resolution descendant of a clause in S. Note that these resolution
descendants still contain all their b-variables and c-variables.

When we eliminate yi, we remove all clauses in M ′ in which yi occurs. Hence,
DPyi(M

′), and consequently,M neither containsE1 = Dj∪{b, b∗, cj}∪{ ck | k 6= j }
nor E2 = Dj ∪ {b, b′, cj} ∪ { ck | k 6= j }. We show that DPyi(M

′) does not contain
a resolvent of one of these two clauses either. This means that M ′ does not contain
one of their resolution descendants, as desired. We only consider E1, because we can
deal with E2 in the same way. There is no yi-resolvent of E1 and a clause C from
{{yi, b}, {yi, b}, {yi, zi, b, b′},{yi, zi, b, b∗}}, because E1 ∩ C contains b. There is no
yi-resolvent of E1 and a (resolution descendant from a) clause C of S either, because
E1 ∩ C contains cj . ut

Lemma 4 Let M be a yz-reduction formula of F ′, and let 1 ≤ i ≤ n. If var(M)
contains yi and zi, then both yi and zi are DP-simplicial in M .

Proof. By symmetry, we only have to show that yi is DP-simplicial in M . Let S be the
set of all clausesDj′∪{b, b∗, cj′}∪{ ck | k 6= j′ } andDj′∪{b, b′, cj′}∪{ ck | k 6= j′ }
in which yi occurs. By definition, var(M) contains all b-variables and all c-variables.
This has the following two consequences. First, as var(M) also contains yi and zi,
we find that M contains the clauses {yi, b}, {yi, b}, {yi, zi, b, b′}, and {yi, zi, b, b∗}.
Second, by Lemma 3, the other clauses of M in which yi occurs form a subset of S.
This means that there are only 3 pairs of clauses C1, C2 in M with C1 ∩ C2 = {yi},
namely the pair {yi, b}, {yi, b}, the pair {yi, b}, {yi, zi, b, b∗}, and the pair {yi, b},
{yi, zi, b, b′}. Each of these pairs satisfies (*). This completes the proof of Lemma 4.

ut

Lemma 5 Let M be a yz-reduction formula of F ′. If M contains neither bcD-clauses
nor resolution descendants of such clauses, then M has a DP-simplicial elimination
ordering b, c1, . . . , cm, b′, b∗, v1, . . . , v`, where v1, . . . , v` form an arbitrary ordering
of the y-variables and z-variables in var(M).

Proof. By our assumptions, the only clauses inM in which b occurs are by-clauses, bz-
clauses, byz-clauses, and the clause {b, b′}. In all these clauses b occurs as b. Hence, b is
(trivially) DP-simplicial in M . We then find that DPb(M) consists of {b′, b∗}, {b′, b∗}
and all bc-clauses. For every cj , there exists exactly one bc-clause, namely {cj , b′, b∗},
in which cj occurs as cj , and exactly one bc-clause, namely {cj , b′, b∗}, in which cj
occurs as cj . Hence, cj is DP-simplicial in DPb,c1,...,cj−1(M) for j = 1, . . . ,m. We
deduce that DPb,c1,...,cm(M) = {{b′, b∗}, {b′, b∗}, {b′, b∗}}. Then b′ is DP-simplicial
in DPb,c1,...,cm

(M), and we find that DPb,c1,...,cm,b′(M) = {{b∗}}. Then b∗ is DP-
simplicial in DPb,c1,...,cm,b′(M), and we find that DPb,c1,...,cm,b′,b∗(M) = ∅. Conse-
quently, vi is DP-simplicial in DPb,c1,...,cm,b′,b∗,v1,...,vi−1(M) for i = 1, . . . , `. This
concludes the proof of Lemma 5. ut

4.2 The Reduction

We are now ready to prove the main result of Section 4.



Theorem 2 The problem of deciding whether a given CNF formula admits a DP-
simplicial elimination ordering is NP-complete.

Proof. Recall that the problem is in NP. Given a CNF formula F that has variables
x1, . . . , xn and clauses C1, . . . , Cm, we construct in polynomial time the CNF for-
mula F ′. We claim that F is satisfiable if and only if F ′ admits a DP-simplicial elimi-
nation ordering.

First suppose that F is satisfiable. Let τ be a satisfying truth assignment of F . We
define functions f and g that map every x-variable to a y-variable or z-variable in the
following way. If τ(xi) = 1, then f(xi) = yi and g(xi) = zi. If τ(xi) = 0, then
f(xi) = zi and g(xi) = yi. Let x1, . . . , xn be the x-variables in an arbitrary ordering.
Then, for every 1 ≤ i ≤ n, the formula DPf(x1),...,f(xi)(F

′) is a yz-reduction formula.
From Lemma 4 we deduce that f(xi) is DP-simplicial in DPf(x1),...,f(xi−1)(F

′) for
every 1 ≤ i ≤ n. Because τ satisfies F , var(Dj) contains a variable that is not in
var(DPf(x1),...,f(xn)(F ′)), for every 1 ≤ j ≤ m. Lemma 3 implies that M does
not contain any bcD-clause or any of their resolution descendants. Then, by Lemma 5,
we find that f(x1), . . . , f(xn), b, c1, . . . , cm, b′, b∗, g(x1), . . . , g(xn) is a DP-simplicial
elimination ordering of F ′.

Now suppose that F ′ admits a DP-simplicial elimination ordering
v1, . . . , v|var(F ′)|. Let vk be the first variable that is neither a y-variable nor
a z-variable. Then M = DPv1,...,vk−1(F ′) is a yz-reduction formula. Let
A = {v1, . . . , vk−1}, and let X consist of all x-variables that have an associ-
ated y-variable or z-variable in A. We define a truth assignment τ : X → {0, 1}
by setting τ(xi) = 1 if yi ∈ A and τ(xi) = 0 if zi ∈ A, for every xi ∈ X . By
Lemma 2, we find that τ is well defined. Because vk is a DP-simplicial b-variable
or a DP-simplicial c-variable in M , we can apply Lemma 1 and find that, for every
1 ≤ j ≤ m, at least one of the two clauses Dj ∪ {b, b∗, cj} ∪ { ck | k 6= j } and
Dj ∪ {b, b′, cj} ∪ { ck | k 6= j } is not in M . This means that every clause Cj
contains a literal x with τ(x) = 1. Hence, F is satisfiable. This completes the proof of
Theorem 2. ut

5 Intermediate Classes

We discuss a possibility for coping with the NP-hardness result of the previous section.
The ultimate reason for this hardness is that a formula may have several DP-simplicial
variables, and it is hard to choose the right one. A simple workaround is to assume
a fixed ordering of the variables and always choose the DP-simplicial variable which
comes first according to this ordering. In this way we loose some generality but win
polynomial time tractability. This idea is made explicit in the following definitions.

Let Ω denote the set of all strict total orderings of the propositional variables. Let
≺ ∈ Ω and F be a CNF formula. A variable x ∈ var(F ) is≺-DP-simplicial in F if x is
DP-simplicial in F , and var(F ) contains no variable y ≺ x that is DP-simplicial in F .
A strict total ordering x1, . . . , xn of the variables of F is a≺-DP-simplicial elimination
ordering if xi is ≺-DP-simplicial in DPx1,...,xi−1(F ) for all 1 ≤ i ≤ n. We let DPS≺
denote the class of all CNF formulas that admit a≺-DP-simplicial elimination ordering,
and we set DPS∀ =

⋂
≺∈Ω DPS≺.



Proposition 2 DPS≺ can be recognized in polynomial time for every ≺ ∈ Ω. More
precisely, it is possible to find in polynomial time a ≺-DP-simplicial elimination order-
ing for a given CNF formula F , or else to decide that F has no such ordering.

Proof. Let x1, . . . , xn be the variables of F , ordered according to≺. We check whether
xi is DP-simplicial in F , for i = 1, . . . , n. Each check is clearly polynomial. When we
have found the first DP-simplicial variable xi, we replace F by DPxi

(F ). We iterate
this procedure as long as possible. Let F ′ be the formula we end up with. If var(F ′) = ∅
then F ∈ DPS≺ and the sequence of variables as they have been eliminated provides a
≺-DP-simplicial elimination ordering. If var(F ′) 6= ∅ then F /∈ DPS≺. ut

Proposition 3 BAC ( DPS∀ ( DPS =
⋃
≺∈Ω DPS≺.

Proof. First we show that BAC ( DPS∀. Let F ∈ BAC and ≺ ∈ Ω. We use induction
on the number of variables of F to show that F ∈ DPS≺. The base case |var(F )| = 0
is trivial. Let |var(F )| ≥ 1. Because F ∈ BAC and var(F ) 6= ∅, we find that F has at
least one weakly simplicial variable. Recall that each weakly simplicial variable is DP-
simplicial. Consequently, F has at least one DP-simplicial variable. Let x be the first
DP-simplicial variable in the ordering≺. By definition, x is a≺-DP-simplicial variable.
We consider F ′ = DPx(F ). Because a β-acyclic hypergraph remains β-acyclic under
vertex and hyperedge deletion, F ′ ∈ BAC. Because F ′ has fewer variables than F ,
we use the induction hypothesis to conclude that F ′ ∈ DPS≺. Hence BAC ⊆ DPS≺
follows. Because ≺ ∈ Ω was chosen arbitrarily, BAC ⊆ DPS∀ follows.

In order to see that BAC 6= DPS∀, we take a hypergraph H that is not β-acyclic
and consider H as a CNF formula with only positive clauses. All variables of H are
DP-simplicial and can be eliminated in an arbitrary order. Thus H ∈ DPS∀ \ BAC.

Next we show that DPS∀ ( DPS. Inclusion holds by definition. In order to show
that the inclusion is strict, we consider the formula F of the example in Section 3.1.
In that section we showed that y, b, b′, b∗, c, z is a DP-simplicial elimination ordering
of F . Hence, F ∈ DPS≺ for any ordering ≺ with y ≺ b ≺ b′ ≺ b∗ ≺ c ≺ z.
We also showed that z is DP-simplicial in F but that F has no DP-simplicial ordering
starting with z. Hence, F /∈ DPS≺′ for any ordering ≺′ with z ≺′ y. We conclude that
F ∈ DPS \ DPS∀. Finally, the equality DPS =

⋃
≺∈Ω DPS≺ holds by definition. ut

5.1 Grades of Tractability

What properties do we require from a class C of CNF formulas to be a “tractable class”
for SAT? Clearly we want C to satisfy the property:

1. Given a formula F ∈ C, we can decide in polynomial time whether F is satisfiable.

This alone is not enough, since even the class of all satisfiable CNF formulas has this
property. Therefore a tractable class C should also satisfy the property:

2. Given a formula F , we can decide in polynomial time whether F ∈ C.

However, if C is not known to satisfy property 2, then it may still satisfy the property:



3. There exists a polynomial-time algorithm that either decides where a given a for-
mula F is satisfiable or not, or else shows that F does not belong to C.

The algorithm mentioned in property 3 may decide the satisfiability of some formulas
outside of C, hereby avoiding the recognition problem. Such algorithms are called
robust algorithms [16]. In addition we would also assume from a tractable class C to be
closed under isomorphisms, i.e., to satisfy the property:

4. If two formulas differ only in the names of their variables, then either both or none
belong to C.

This leaves us with two notions of a tractable class for SAT, a strict one where properties
1, 2, and 4 are required, and a permissive one where only properties 3 and 4 are required.
Every strict class is permissive, but the converse does not hold in general. For instance,
the class of Horn formulas is strictly tractable, but the class of extended Horn formulas
is only known to be permissively tractable [14].

Where are the classes from our paper located within this classification? As a result
of Theorem 1, we find that BAC is strictly tractable. By Theorem 2, DPS is not strictly
tractable (unless P = NP). The classes DPS≺ do not satisfy property 4. Hence they are
not considered as tractable classes. However, DPS∀ is permissively tractable, because
an algorithm for DPS≺ for an arbitrary ordering ≺ is a robust algorithm for DPS∀. It
remains open whether DPS is permissively tractable.

6 Comparisons

We compare the classes of our paper with other known (strictly or permissively) tractable
classes. Due to Proposition 3, we only need to consider the boundary classes BAC and
DPS. We say that two classes C1 and C2 of CNF formulas are incomparable if for every
n larger than some fixed constant there exist formulas in C1 \ C2 and in C2 \ C1 with
at least n variables. We show that BAC and DPS are each incomparable with a wide
range of classes of CNF formulas, in particular with all the tractable classes considered
in Speckenmeyer’s survey [15], and classes based on graph width parameters [9].

We first introduce some terminology. The incidence graph I(H) of a hypergraph
H = (V,E) is the bipartite graph where the sets V and E form the two partitions,
and where e ∈ E is incident with v ∈ V if and only if v ∈ e. The incidence graph
of a formula F is the bipartite graph I(F ) with vertex set var(F ) ∪ F and edge set
{ {C, x} | C ∈ F and x ∈ var(C) }. A graph is chordal bipartite if it is bipartite and
has no induced cycle on 6 vertices or more. There exists a useful relationship between
β-acyclic formulas and chordal bipartite graphs, due to Tarjan and Yannakakis [17].
They presented this relationship in terms of β-acyclic hypergraphs, whereas we use the
formulation of our previous paper [12].

Proposition 4 ([17]) For a CNF formula F , statements (i)-(iii) are equivalent:

(i) F is β-acyclic;
(ii) I(H(F )) is chordal bipartite;

(iii) I(F ) is chordal bipartite.



The following four families of formulas will be sufficient for showing most of our
incomparability results. Here, n ≥ 1 is an integer, x1, . . . , xn and y1, . . . , y2n are
variables, and C1, . . . , C2n are all possible clauses with variables x1, . . . , xn.

Fa(n) = {C1, . . . , C2n}

Fs(n) = {{x1, . . . , xdn
2 e}, {xdn

2 e, . . . , xn}}

Fc(n) = { {xi, xi+1} | 1 ≤ i ≤ n− 1 } ∪ {{xn, x1}}

Fac(n) = { {yj−1, yj} ∪ Cj | 1 < j ≤ 2n } ∪ {{y2n , y1} ∪ C1} ∪
{ {yj , yj+1} ∪ Cj | 1 ≤ j ≤ 2n } ∪ {{y2n , y1} ∪ C2n}.

We observe that every I(Fa(n)) is a complete bipartite graph with partition classes
of size n and 2n, respectively, and that every I(Fs(n)) is a tree. Because complete
bipartite graphs and trees are chordal bipartite, we can apply Proposition 4 to obtain the
following lemma.

Lemma 6 Fa(n), Fs(n) ∈ BAC for all n ≥ 1.

By the following lemma, the other two classes of formulas do not intersect with DPS.

Lemma 7 Fc(n), Fac(n) /∈ DPS for all n ≥ 3.

Proof. Throughout the proof we compute indices of modulo n for the vertices xi, and
modulo 2n+1 for the vertices yj .

First we show that Fc(n) /∈ DPS. The clauses C = {xi, xi+1} and C ′ =
{xi−1, xi} ∈ Fc(n) have the xi-resolvent {xi−1, xi+1} which is not a subset of C
or C ′. Hence, C and C ′ violate (*). Consequently, xi is not DP-simplicial for any
1 ≤ i ≤ n. Because Fc(n) has no other resolvents, Fc(n) has no DP-simplicial vari-
ables. Because var(Fc(n)) 6= ∅ either, we conclude that Fc(n) /∈ DPS for all n ≥ 3.

Next we show that Fac(n) /∈ DPS. Let 1 ≤ i ≤ n for some n ≥ 3. Let 1 ≤
j1, j2 ≤ 2n such that Cj1 ∩ Cj2 = {xi}. By definition, Fac(n) contains the clauses
C = {yj1 , yj1+1} ∪ Cj1 and C ′ = {yj2 , yj2+1} ∪ Cj2 , which have xi-resolvent C∗ =
{yj1 , yj1+1, yj2 , yj2+1}∪ (Cj1 ∪Cj2) \ {xi, xi} . However, since {yj1 , yj1+1} 6= {yj2 ,
yj2+1}, we find that C∗ is not a subset of C or C ′. Hence, C and C ′ violate (*).
Consequently, xi is not DP-simplicial for any 1 ≤ i ≤ n.

Let 1 ≤ j ≤ 2n for some n ≥ 3. Then Fac(n) contains the two clauses
C = {yj , yj+1} ∪ Cj and C ′ = {yj−1, yj} ∪ Cj , which have yj-resolvent C∗ =
{yj−1, yj+1} ∪ Cj . However, yj−1 ∈ C∗ \ C and yj+1 ∈ C∗ \ C ′. Hence, C∗ is not
a subset of C or C ′. Consequently yj is not DP-simplicial for any 1 ≤ j ≤ 2n. Be-
cause Fac(n) has no other resolvents, Fac(n) has no DP-simplicial variables. Because
var(Fac(n)) 6= ∅ either, we conclude that Fac(n) /∈ DPS for all n ≥ 3. ut

Suppose that we want to show that BAC and DPS are incomparable with a class C
of CNF formulas. Then, Proposition 3 combined with Lemmas 6 and 7 implies that we
only have to show the validity of the following two statements:

(i) Fa(n) /∈ C or Fs(n) /∈ C for every n larger than some fixed constant;
(ii) Fc(n) ∈ C or Fac(n) ∈ C for every n larger than some fixed constant.



6.1 Easy Classes

We use (i) and (ii) to show that BAC and DPS are incomparable with the classes con-
sidered by Speckenmeyer [15]. For example, consider the class of 2-CNF formulas,
i.e., CNF formulas where every clause contains at most two literals. For every n ≥ 3,
Fa(n) is not a 2-CNF formula. This shows (i). Furthermore, (ii) follows from the fact
that Fc(n) is a 2-CNF formula for every n ≥ 3. Consequently, the class of 2-CNF
formulas is incomparable with BAC and DPS.

As a second example we consider the class of hitting formulas, i.e., CNF formulas
where C ∩ C ′ 6= ∅ holds for any two of their clauses [15]. Now, for every n ≥ 3 the
formula Fs(n) is not a hitting formula. This shows (i). It is not difficult to see that for
n ≥ 3, Fac(n) is a hitting formula. This shows (ii). Consequently, the class of hitting
formulas is incomparable with BAC and DPS.

The proofs for other classes of formulas considered in [15] are similar. In particular,
for the classes Horn, renameable Horn, extended Horn, CC-balanced, Q-Horn, SLUR,
Matched, bounded deficiency, nested, co-nested, and BRLRk formulas we can utilize
the formulas Fa(n) to show (i) and the formulas Fc(n) to show (ii).

6.2 Classes of Bounded Width

The SATISFIABILITY problem is tractable for various classes of formulas that are de-
fined by bounding certain width-measures of graphs associated with formulas. Besides
the incidence graph I(F ), the two other prominent graphs associated with a CNF for-
mula F are the primal graph P (F ) and the directed incidence graph D(F ). The graph
P (F ) has vertex set var(F ) and edge set { {x, y} | x, y ∈ var(C) for some C }. The
graph D(F ) is the directed graph with vertex set var(F )∪F and arc set { (C, x) | C ∈
F and x ∈ C } ∪ { (x,C) | C ∈ F and x ∈ C }. We restrict our scope to the graph
invariants treewidth (tw), and clique-width (cw). For their definitions we refer to other
sources [9], as we do not need these definitions here.

For a graph invariant π, a graph representation G ∈ {P, I,D} and an integer k, we
consider the class CNFGk (π) of CNF formulasF with π(G(F )) ≤ k. It is known [9] that
for every fixed k ≥ 0, SAT can be solved in polynomial time for the classes CNFPk (tw),
CNFIk(tw), and CNFDk (cw).

Proposition 5 For every k ≥ 2, CNFPk (tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFPk (tw). Because P (Fa(n))
is the complete graph on n vertices, it has treewidth n − 1 [1, 10]. Hence, Fa(n) /∈
CNFPk (tw) for all n ≥ k+ 2. This proves (i). Because P (Fc(n)) is a cycle of length n,
it has treewidth 2 [1, 10]. Hence, Fc(n) ∈ CNFP2 (tw). This proves (ii). ut

Proposition 6 For every k ≥ 2, CNFIk(tw) is incomparable with BAC and DPS.

Proof. We prove that (i) and (ii) hold with respect to CNFIk(tw). Because I(Fa(n)) is
a complete bipartite graph with partition classes of size n and 2n, respectively, it has
treewidth n [1, 10]. Hence, Fa(n) /∈ CNFIk(tw) for all n ≥ k + 1. This proves (i).
Because I(Fc(n)) is a cycle of length 2n, it has treewidth 2 [1, 10]. Hence, Fc(n) ∈
CNFI2(tw). This proves (ii). ut



Proposition 7 For every k ≥ 4, CNFDk (cw) is incomparable with BAC and DPS.

Proof. First we show that BAC \ CNFDk (cw) contains formulas with an arbitrary large
number of variables. For all n ≥ 1, Brandstädt and Lozin [3] showed that there is a
bipartite permutation graph G(n) with clique-width n. We do not need the definition of
a bipartite permutation graph; it suffices to know that bipartite permutation graphs are
chordal bipartite [16].

Let G′(n) = (Un ∪ Wn, En) denote the graph obtained from G(n) by deleting
twin vertices as long as possible (two vertices are twins if they have exactly the same
neighbors). The deletion of twins does not change the clique-width of a graph [4].
Hence, G′(n) has clique-width n. It is well known and easy to see that the clique-width
of a bipartite graph with partition classes of size r and s, respectively, is not greater
than min(r, s) + 2. Hence |Un| ≥ n − 2. Because we only deleted vertices, G′(n) is
also chordal bipartite.

Let F (n) = {N(w) | w ∈ Wn } where N(w) denotes the set of neighbors of w in
G′(n). Then G′(n) is the incidence graph of F (n), because G′(n) has no twins. Hence
F (n) ∈ BAC follows from Proposition 4. Recall that the clique-width of G′(n) =
I(F (n)) is n and that |Un| ≥ n − 2. Since all clauses of F (n) are positive, I(F (n))
and D(F (n)) have the same clique-width. We conclude that F (n) is a formula on at
least n− 2 variables that belongs to BAC \ CNFDk (cw) for n ≥ k + 1.

For the converse direction we observe thatD(Fc(n)) is an oriented cycle and clearly
has clique-width at most 4. This means that D(Fc(n)) ∈ CNFD4 (cw). By Lemma 7,
we have that D(Fc(n)) /∈ DPS for all n ≥ 3. We then conclude that CNFD4 (cw) \DPS
contains D(Fc(n)) for all n ≥ 3. We are left to apply Proposition 3 to complete the
proof of Proposition 7. ut

Results similar to Propositions 5-7 also hold for the graph invariants branchwidth
and rank-width, since a class of graphs has bounded branchwidth if and only if it has
bounded treewidth [1], and a class of directed graphs has bounded rank-width if and
only if it has bounded clique-width [8].

7 Conclusion

We have studied new classes of CNF formulas: the strictly tractable class BAC, the
permissively tractable class DPS∀, and the hard-to-recognize class DPS. Our results
show that the classes are incomparable with previously studied classes. Our results
establish an interesting link between SAT and algorithmic graph theory: the formulas
in BAC are exactly the formulas whose incidence graphs belong to the class of chordal
bipartite graphs, a prominent and well-studied graph class. It would be interesting to
consider other classes of bipartite graphs, e.g., the classes described by Brandstädt,
Le and Spinrad [2], and determine the complexity of SAT restricted to CNF formulas
whose incidence graphs belong to the class under consideration. Of particular interest
are minimal super-classes of the class of chordal bipartite graphs.
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