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Abstract. Permutations and combinations are two basic concepts in elemen-
tary combinatorics. Permutations appear in various problems such as sorting,
ordering, matching, coding and many other real-life situations. While conven-
tional SAT problems are discussed in combinatorial space, “permutatorial”
SAT and CSPs also constitute an interesting and practical research topic.

In this paper, we propose a new type of decision diagram named “xDD,” for
compact and canonical representation of a set of permutations. Similarly to
an ordinary BDD or ZDD, 7DD has efficient algebraic set operations such as
union, intersection, etc. In addition, 7DDs hava a special Cartesian product
operation which generates all possible composite permutations for two given
sets of permutations. This is a beautiful and powerful property of 7DDs.

We present two examples of 7DD applications, namely, designing permutation
networks and analysis of Rubik’s Cube. The experimental results show that a
wDD-based method can explore billions of permutations within feasible time
and space limits by using simple algebraic operations.

1 Introduction

Permutations and combinations are two basic concepts in elementary combinatorics
and discrete mathematics [4]. Permutations appear in various problems such as sort-
ing, ordering, matching, coding and many other real-life situations. Permutations are
also important in group theory since they correspond to bijective functions and gener-
ate symmetric groups. While conventional SAT problems are defined in combinatorial
space, “permutatorial” SAT and CSPs also constitute an interesting research topic.

In this paper, we propose a new type of decision diagram named “7DD,” for
compact and canonical representation of sets of permutations. tDDs are based on
BDDs (Binary Decision Diagrams)[1] and ZDDs (Zero-suppressed BDDs)[6]. Ordinary
BDDs/ZDDs provide representations of propositional logic functions or sets of com-
binations, namely, they represent partial sets of combinatorial space. Data structures
and algorithms on BDDs/ZDDs have been researched for more than twenty years, and
BDD/ZDD-based SAT solving techniques have also been explored [2]. However, most
DD-based methods are limited to combinatorial space, and no practical techniques for
direct solving of permutational problems are known, even though they have various
important applications.
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wDDs are the first practical idea for efficient manipulation of sets of permutations
on the basis of decision diagrams. This data structure can compress a large number
of permutations into a compact and canonical representation. Similarly to ordinary
BDDs/ZDDs, 7DDs have efficient algebraic set operations such as union, intersection,
and difference. In addition, 7DDs have a special Cartesian product operation which
generates all possible composite permutations (cascade of two permutations) for two
given sets of permutations. This is a beautiful and powerful property for solving
various problems in permutation space. For example, we can represent the primitive
moves of Rubik’s Cube with a small 7DD, and by simply multiplying this 7DD
by itself k times, we can generate a single canonical 7DD representing all possible
positions reachable within & moves. The computation time depends on the size of
the 7DD, which is sometimes much smaller than the number of positions. Once we
have generated 7DDs for a problem, we can easily apply various analysis or testing
techniques, such as counting the exact number of permutations, exploring satisfiable
permutations for a given constraint and calculating the minimal or the average cost
of all permutations.

The idea of 7DDs provide hints about the application of state-of-the-art SAT
techniques used for solving combinatorial problems in the “permutatorial world.”
There is a rich body of studies in group theory led by Galois and many researchers in
discrete mathematics [3]. 7DDs represent a new computational technique which can
be applied in such research fields, and we can expect it to yield numerous exciting
results in the future.

In the rest of this paper, Section 2 describes some notations and the basics of
BDDs/ZDDs. In Section 3, we propose the general structure of #DDs, and Section 4
gives the algorithms of algebraic operations for #DDs, followed by Section 5, which
presents experimental results for two typical problems, namely, designing permutation
networks and analyzing Rubik’s Cube.

2 Preliminaries

2.1 Sets of Permutations

A permutation is a bijective function 7 : S — S, where S is a finite set {1,2,3,...,n}.
Although it is often confusing, in this paper we use the notation for permutation
7w = (a1, a2,as,...,a,), in which each item k moves to ay. For example, 7 = (4,2, 1, 3)
implies 1 -4, 2 -2, 3 = 1, and 4 — 3. In this case, we may also use multiplicative
forms, such as 1r =4, 27 =2, 37 = 1, and 47 = 3. A composition of two permu-
tations 77y simply indicates a composition of two bijective functions. For example,
if m = (3,1,2) and my = (3,2,1) then myme = (1,3,2) because lmimy = 3m = 1,
2mymy = lmg = 3, and 3wy = 2wy = 2. In general, mywy # mamy.

In this paper, 7. denotes an identical permutation (1,2,3,...,n). Clearly nm. =
mem = 7 for any m. We define the dimension of a permutation dim(r) as the highest
item number moved by 7. For example, dim((3,1,2,4)) = 3 as item 4 does not move.
We set dimn(w.) = 0, and otherwise dimn(w) > 2. Also, we sometimes omit items larger
than dim /(7). For example, (3,2,1,4,5) can be written simply as (3,2,1).

The main objective of this paper is the representation of sets of permutations. We
describe such set as P = {m, (2,1),(2,3,1)}. The empty set is denoted as (). We also
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Fig. 1. Binary Decision Tree, BDD and ZDD

define the dimension of a set of permutations such that dim(P) = maz({dim(r)| = €
P}). Finaly, we set dim(P) =0 iff P = ( or P = {m.}, otherwise dim(P) > 2.

We may use a multiplicative notation between a set of permutation P and a
permutation m, which is defined as follows: P -7 = {#'w | ©' € P}.

2.2 BDDs and ZDDs

A Binary Decision Diagram (BDD) [1] is a graph representation for a Boolean func-
tion. As illustrated in Fig. 1, it is derived by reducing a binary decision tree graph,
which represents a decision making process through the input variables. If we fix the
order of the input variables and apply the following two reduction rules, then we
obtain a compact canonical form for a given Boolean function:

(1) Delete all redundant nodes whose both edges have the same destination, and
(2) Share all equivalent nodes having the same child nodes and the same variables.

Although the compression ratio achieved by using a BDD depends on the properties
of the Boolean function to be represented, it can be between 10 and 100 times in
some practical cases. In addition, we can systematically construct a BDD as a result
of a binary logic operation (i.e., AND or OR) for a given pair of operand BDDs.
This algorithm is based on hash table techniques, and the computation time is almost
linear with respect to the size of the BDD.

A zero-suppressed BDD (ZDD) [6] is a variant of BDD customized for manipulat-
ing sets of combinations. ZDDs are based on special reduction rules which differ from
ordinary ones. As shown in Fig. 2, we delete all nodes whose 1-edge points directly
to the O-terminal node and do not delete the nodes that would be deleted in ordinary
BDDs. Similarly to ordinary BDDs, ZDDs give compact canonical representations for
sets of combinations. We can construct ZDDs by applying algebraic set operations
such as union, intersection and difference, which correspond to logic operations in
BDDs.

The zero-suppressing reduction rule is extremely effective for sets of sparse com-
binations. If the average appearance rate of each item is 1%, ZDDs are possibly up to
100 times more compact than ordinary BDDs. Such situations often appear in real-life
problems, for example, in a supermarket, the number of items in a customer’s basket



(a) Ordinary BDD reduction rule (b) ZDD reduction rule

Fig. 2. ZDD reduction rule.

is usually much smaller than the number of all items displayed at the supermarket.
ZDDs are now widely recognized as the most important variant of BDDs (for details,
see Knuth’s book fascicle [5].)

3

Data Structures

3.1 Desired Properties for 71DDs

Before discussing the general structure of 71DDs, we list the basic properties desired

for

wDDs which are necessary for representing sets of permutations.

The empty set () corresponds to a O-terminal node in a 7DD since this is a zero
element for union operation.

The singleton set {m.} corresponds to a 1-terminal node since this is an identity
element for composite operations.

The form of a 7DD for P does not depend on items larger than dim(P). For
example, {(3,2,1),(2,1)} and {(3,2,1,4,5),(2,1,3,4,5)} should yield the same
7DD.

A 7DD should provide a canonical (unique) representation for a set of permuta-
tions. This allows for efficient equivalence checking and satisfiability testing.
Each path from the root node to a 1-terminal node should correspond to a per-
mutation included in the set, namely, the number of paths corresponds to the
cardinality of the set.

3.2 Decomposition of Permutations

Transposition is a basic permutation of simple swapping of two items. In this paper,
T(a,y) denotes the transposition of items & and y. Clearly, T(, ) = T(y,2) and (7(z,y))* =
me for any x and y. We set 7(, o) = .

The key idea behind #DDs is based on the observation that any permutation 7 can

be decomposed into a sequence of up to (dim(w) — 1) transpositions. For example, a
permutation (3,5,2,1,4) can be decomposed into 7(s1)7(3,2)7(4,1)T(5,4), as illustrated
in Fig. 3.
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Theorem 1 Any non-identical permutation w has a decomposition form which con-
sists of up to (dim(w) — 1) transpositions, and there is a way to obtain a unique
decomposition form for any given permutation.

(Proof) If dim(r) = 2 then 7 should be a single transposition 75 1. Next, we assume
dim(m) > 2. If welet x = dim(7) and ) = 7-7(4 +x), then zm; =  holds. Since  is not
moved by 71, then dim(m;) < dim(7). The equation m; = 77(, ) can be transformed
into ™ = 71 - T(¢,2r), and thus 7 can be decomposed into a permutation m; followed
by one transposition. In applying this procedure to 7 recursively, the dimension
decreses monotonically, and eventually we can obtain a unique decomposition form
which consists of up to (dim(w) — 1) transpositions. |

For the example shown in Fig. 3, the dimension is 5, item 5 is moved to 4, and
we obtain (3,5,2,1,4) = (3,4,2,1) - 75 4). Next, the dimension is 4, item 4 is moved
to 1, and we obtain (3,4,2,1) = (3,1,2) - 7(4,1). Similarly, we subsequently obtain
(3,1,2) = (2,1) - 7(3,), and finally (2,1) = 7(3,1). In total, we obtain a sequence of 4
transpositions. This procedure is deterministic and the result is unique for any given
permutation.

3.3 General structure of 7DDs

From the above observation, we can uniquely represent a permutation by using a
combination of transpositions. Since ZDDs are efficient representations for sets of
combinations, we might arrive at a ZDD-like data structure for representing sets of
permutations.

Figure 4 shows the main idea behind 7#DDs. We assign a pair of item IDs (x,y)
to each decision node, where ¢ = dim(P) and x > y > 1. Each decision node has the
following semantics:

P = PO @] (Pl 'T(z,y))a

where Py and P; represent a partition of P determined by the existence of 7(, . in
their decomposition forms. More formally, they are described as:

Py={r|meP, xn #y}, and P, = {77, )| 7 € P, xm = y}.

Note that dim(P;) < dim(P) holds since x has not been moved by any of the per-
mutations in P;. Applying this expansion recursively, we eventually obtain one of the
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Fig. 5. Variable ordering rules in 7DD. Fig. 6. Multi-rooted shared 7#DD.

Table 1. Primitive 7DD operations.

0 Returns the empty set. (O-termial node)
{7} Returns the singleton set. (1-terminal node)
P.top Returns the IDs (z,y) at the root node of P.
PUQ Returns {7 | 7 € P or m € Q}.

PNQ Returns {7 | 7 € P, m € Q}.

P\Q Returns {7 | 7 € P, 7 ¢ Q}.

P.r(z,y) Returns P - 7(, 4)-

PxQ Returns {af | a € P, B € Q}.
P.cofact(x,y)|Returns {n7, )| 7 € P, 7 = y}.

P.count Returns the number of permutations.

two trivial sets of permutations, namely, the empty set (} (O-terminal node) or the
singleton set {m.} (1-terminal node).

Similarly to ordinary ZDDs, a fixed order of variables is necessary for all 7(, , in
order to preserve the unique representation of the 7DD. We use the following order
from bottom to top:

(2,1)(3,2)(3,1)(4,3)(4,2)(4,1)(5,4)(5,3)(5,2)(5,1)(6,5)(6,4) . ..

Figure 5 shows the rules for variable ordering between two adjacent decision nodes in
our wDDs.

In a 7DD, any combination of transpositions can be represented by a unique path
from the root node to a 1-terminal node.

Finally we confirm the node reduction rules in 7DDs. Similarly to ordinary ZDDs,
sharing of equivalent nodes is effective for 7DDs as well. Note that itis necessary to
check a pair of items (z,y) instead of only one decision variable in ZDDs. The zero-
suppressing rule works rather well for the deletion of redundant nodes in 7DDs since
unnecessary transpositions are automatically deleted, and thus nodes corresponding
to unmoved items never appear in 7DDs.

As another similarity to BDDs/ZDDs, multiple #DDs can share their respective
subgraphs with each other in a multi-rooted 7DD, as shown in Fig. 6.
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4 Algorithms for Algebraic Operations

In the previous section, we presented the basic structure of 7¥DDs. However, we should
consider not only compact representation but also efficient manipulation algorithms.
Similarly to ordinary BDDs/ZDDs, 7DDs can be constructed by applying algebraic
operations, as illustrated in Fig. 7. Table 1 summarizes the primitive operations used
in 7DDs for manipulating sets of permutations. Here, we present a method for com-
puting these operations efficiently. We are aiming at developing an efficient algorithm
which computes in linear or small-order polynomial time with respect to the size of
the relevant 7DD, which is sometimes much smaller than the total number of permu-
tations.

4.1 Binary Set Operations

First we consider the following three binary set operations: union, intersection and
difference. As mentioned above, 7DD is based on the expansion: P = Py U (P - T(5,y))
on each decision node. Since the two parts Py and (P - 7(, 4)) are disjoint, and since
the 7 operation is independent of the union, intersection and difference operations,
we can execute those set operations in the same manner as for ordinary BDDs/ZDDs.
For example, the intersection operation can be written as follows:

PmQ:(POU(Pl T(wy)) (QOU(Q : (:v,y)))
=(PoNQo)U((PLNQ1)T(ay))-

Then, (PoNQo) and (PNQ1) are called recursively. Similarly to ordinary BDDs/ZDDs,
we can avoid duplicate recursive calls by using cache to store previous operations and
their results.
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4.2 Transposition

Next, we consider the transposition operation with any pair of items for a given set
of permutations. Let P be a given 7DD and P.top = (z,y), after which we compute
P T(y)- If u > o, we can simply return a decision node with items (u,v), whose
0-edge points to () and whose 1-edge points to P. On the other hand, if v < x, more
complex work is needed in order to traverse the internal nodes of P.

To illustrate the algorithm, we recall the example permutation (3,5,2,1,4) shown
in Fig. 3, and we compute (3,5,2,1,4) 7(3.1). In a 7DD, (3,5,2,1,4) is represented
by a sequence of transpositions (s 1)7(3,2)7(4,1)7(5,4), and thus we should compute
(7(271)7(372)7(471)7'(574)) 7(3,1)- Then, we can observe the following transformation:

T(2,1)7(3,2)T(4,1) T(5, 4)) T(3,1)

(T(2,1) 7(3,2) T(a,1)

= (7'(2 1)7(3, 2)7(4,1)) (T5 ,4)T(3,1)

= (7'(2 1)7(3,2) (4,1)) (T3 1)7(5, 4))

= (T2n7,2)) (T4,1)7(3,1)) T(5,9)

= (T(z 1)7(3, 2)) (T(3 1) T(4 3)) T(5,4)

=T(2,1) (T(3 2)7(3, 1)) T(4,3)7(5,4)

=T(2,1) (7'(2 1)7(3, z)) T(4,3)7(5,4)
2)7(4,3)7(5,4)

(7'(2 1)7(2,1) ) 7(3,
= T(3,2)7(4,3)7(5,4)-

In this transformation, two adjacent transpositions are compared, and if the or-
der violates the fixed order of the 7DD, then the two transpositions are swapped.
For example, (7(5,4)7(3,1)) is transformed into (7(31)7(5,4)), and (7(4,1)7(3,1)) becomes
(7(3,1)T(4,3))- In this way, eventually we can obtain a normalized decomposition form
of the 7#DD. Care should be taken since some item numbers are slightly altered in
this process.

Figure 8 illustrates an example of swapping T(q,y)T(u,s) With T(y ) T(e ) In this
example, u,v, and x are kept while y is changed. Here, we determine that such swap-
ping is always possible for any pair of transpositions, and we also determine the cases
in which the items should be changed.
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Fig. 9. Example of Cartesian product.

Theorem 2 For given positive integers x,y,u,v where x >y >0 andx > u > v, a
pair of cascading transpositions T(, 4)T(u,s) can be transformed into we OT T(y v)T(2,y1),
where u' and y' are some positive integers satisfying v’ < x and x > y" > 0.

(Proof) If there are no colliding items for 7(, ) and 7(,,.), they can be swapped
transparently. Next, we check all collision cases. If y = u, then v/ = u and y' = v.
Ify=v,thenuv =y =wu.If 2 = u, then v/ = ¢y = y. If = v and y = v, then
T(e,y)T(u,w) = Te- Otherwise, simply v’ = u and y' = y. O
Based on this theorem, we can implement a recursive algorithm for the trans-
position operation. If P.top = (z,y) and v < x, then P - 71(,,) can be written as
follows:
P- T(uw) = (PO @] (Pl -T(z7y))) " T(u,v)
= Po - ) U (P1 - (T(a,9) T(w,0)))
= (B0 - () U (Pr - T 0) ~ Ta))

This formula shows that we can obtain a decision node with IDs (z,y’), whose 0-edge
points to the result of Py-7(, ) and whose 1-edge points to the result of P -7(.s ). Here,
it should be noted that dim(P; - 7)) must be lower than . Each sub-operation can
be computed by a recursive call, and eventually we arrive at a trivial case. Similarly
to other operations, we can avoid duplicate recursions by using operation cache.

4.3 Cartesian Product

The Cartesian product PxQ = {af | @ € P, § € Q} computes the set of all possible
composite permutations chosen from P and (). This is the most important and useful
operation in manipulating permutations.

By using transposition operations, the product P % ) can be written as follows.
Here, we assume Q.top = (z,y).

PxQ=Px(QoU(Q1" T(ay))
= (PxQo)U((P*Q1) T(ay))



This formula indicates that we may recursively call sub-operations (P * Q) and
(P % Q1), and we eventually arrive at a trivial operation P x () or P x {m.}. As in the
case of other operations, we can avoid duplicate recursions by using operation cache.
However, one different point here is that we cannot ensure dim(P % 1) < z, and
therefore it is necessary to apply a general transposition operation for (P* Q1) - 7(¢ y)-
Figure 9 shows an example of product operation for two 7DDs whose items are
disjoint. In this case, even though the number of permutations increases multiplica-
tively, the size of the 7DD increases only additively. Since the computation time also
depends on the size of the 7DD, in such cases the effectiveness of the wDD-based
method increses exponentially as compared to using an explicit data structure.

4.4 Cofactor

After generating a 7DD for a set of permutations, it is necessary to extract a subset of
permutations in order to check whether a certain property is satisfied. A cofactor op-
eration P.cofact(u,v) = {n7(u)| ™ € P, um = v} generates a subset of permutations
such that the item u is moved to v. For example,

{(3 2 1),(2 3, 1) (1,3,2),(2,1)}.cofact(3, 1)
=1{3,2,1)73,1),(2,3,1)73.1)}
= {m., (2, 1)}

Note that P.cofact(u,u) can extract the permutations where u is not moved. Using
cofactor and other set operations, various constraints can be specified and applied to
7DDs.

Here, we discuss the method for executing the cofactor operation. If (u,v) cor-
responds to P.top, we may simply return the 1-edge of the root node. Otherwise, it
is necessary to traverse the internal nodes in P. We can observe that the following
equation holds.

P.cofact(u,v) = (P - T(yv))-cofact(u, u),

Thus, the cofactor operation can be executed by using a transposition operation.
Due to space limitations, we omit the details regarding the implementation of this
operation.

5 Application Examples

Here, we present two application examples and the respective experimental results. We
implemented a prototype version of a 7DD manipulator based on our own BDD/ZDD
package. The program consists of 330 lines of C++ code, newly added to the basic
libraries including 6,000 lines of C/C++ code. The following experiments were per-
formed by using a 2.4 GHz Core2Duo PC with 2 GB of RAM, SuSE 10 OS and GNU
C++ compiler.

5.1 Design of Permutation Networks

A permutation network is an n-input and n-output network which can generate any
permutation of the input items. Such circuits are often used in customized hardware
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Fig. 10. A permutation network for (4,2,1,6,5,3).

Table 2. Experimental results for a 10-bit permutation network.

P, [nDDJ] # of | total P.] aDD | # of total P, [ntDD]  # of total

size | perm. | #T size | perm. #T size | perm. #T
Py 0 1 0||Pis| 3956| 528441| 3412177||Ps»|8655| 3497165(24691907
P, 9 10 9||Pi7| 4685| 690778| 4522462 ||Ps3|7669| 3544208|25039740
P, 31 54 97||P1sg| 5455| 878737| 5821218||Ps4|6590| 3576891|25279788

Ps 63 209 546||P1o| 6249(1089826| 7296041 || Ps5|5470| 3598561 (25439624
P, | 109 649 2152||Pao| 7047|1319957| 8915085||P3s|4374| 3612201|25539440
Ps | 172 1717 6704||P21| 7834|1563651(10645703||P37|3353| 3620296|25598543
Ps | 261 4015 17632||FP22| 8591(1814400 (12433871 ||Psg|2444| 3624785(25630975
Pr | 390 8504| 40751|(FP23| 9293]2065149(14239194 | P39|1671| 3627083|25647411
Ps | 558| 16599 84985||FPas| 9905(2308843 (15996836 ||Pso|1055| 3628151(25654943
Py | 773| 30239| 162995||Pa5| 10397(2538974 (17671711 ||Psy1| 602| 3628591(25657983
P19[1034| 51909| 291537||P2s| 10735(2750063 (19206325 || Paz| 305| 3628746(25659023
P1111353| 84592| 491272 |P27|10894 (2938022 (20584666 || Paz| 136| 3628790(25659303
P15(1727(131635| 786100||P2g| 10857(3100359 (21772380 || Psa| 59|3628799(25659355
P1312169(196524(1201963 | | P2g| 106143236212 (22773147 ||Psys| 45|3628800(25659360
P14]2688(282578(1764353 || P3| 10157(3346222 (23579581 || Pss| 45|3628800(25659360
P15|3286(392588(2495497| | P31| 9497|3432276|24214975

of cryptographic systems and signal processing systems. Here, we consider a type of
permutation networks using a set of n-bit parallel lines with a number of swapping
switches X} between any two adjacent lines, as shown in Fig. 10. We then consider
an optimal layout of switches for a given permutation.

A set of permutations given by one switch can be written as U?;ll T(i,i+1)- Lhus,
all possible permutations generated by up to k switches are described as follows.

P0:7Te

P =P U (U i1
Pk = Pk—l * P1 (fOI‘ k Z 2)

According to this iterative formula, we can generate 7DDs for Py, P;, P, ... by in-
creasing k, and eventually P41 = P for any k£ > m. Then, m shows the minimum
number of switches to required cover all permutations.

Table 2 shows the experimental results for a 10-bit permutation network. In this
table, “mDD size” shows the number of decision nodes in the 7DD, “# of perm.”
indicates the number of permutations included in Py, and “total #7” is the total
number of transpositions included in all permutations in Pj. Note that the total #7
corresponds to the data size when using an explicit representation for Pj.

The result shows that Pyg is equivalent to Py5, and thus we can see that m = 45.
In other words, 45 switches are sufficient to cover all 362,880 (=10!) permutations.



Table 3. Experimental results for n-bit permutation networks.

n{m| «wDD size # of total time
(peak) [(final)| perm. #T (sec)

I10 0 0 1 0] 0.00

201 1 1 2 1| 0.00

3 3 3 3 6 7] 0.00

4] 6 9 6 24 46| 0.00

5(10 27 10 120 326 0.00

6(15 89 15 720 2556 0.01

721 292 21 5040 22212 0.02

828 972 28 40320 212976 0.06

9136 3241 36 362880 2239344 0.26

10|45 10894 45 3628800 25659360 1.19
11155| 36906 55 39916800 318540960 5.77
12|66| 125904 66| 479001600| 4261576320| 27.06
13|78| 435221 78| 6227020800 61148511360 (126.80
141911520439 91|87178291200]937030429440 |666.29

10| |7

1 4
12 2|3 516 819 11

24| [14[15] [17[18] |20]21] |23
13| |16

22| |19

Fig. 11. Assignment of items for the corner cubes of Rubik’s Cube.

The number of permutations and the total number of transpositions increase mono-
tonically in this iteration process, however, the size of the 7DD reaches a peak of
10,894 at P»7, and consequently we require a 7DD of only 45 decision nodes to repre-
sent all 10! permutations. The latter Pys might yield more beautiful structures, and
the 7DD nodes are well shared, even though they include a rather large number of
permutations.

We can also observe that Py5; and P,y differ by only a single number of permuta-
tions by simply applying the difference set operation (Py5 \ Pu4), and we can confirm
that the last permutation is (10,9,8,7,6,5,4,3,2,1). By applying algebraic operations
for 71DDs to Pis, we can determine the minimal number of switches for any given
permutation, and we can find the layout of the switches which is necessary in order
to obtain this permutation.

Table 3 presents the results for n-bit permutation networks for n up to 14. We
show the peak and the final size of the 7DDs and their respective computation times.
The number of all permutations is clearly n!, however, the final size of the 7DD is only
n(n — 1)/2. Even though the peak size of the 7DD grows exponentially, its growth
rate appears to be slower than that of n!. Here, we can observe that the 7DDs are at
least 1000 times more compact than explicit representations.



Table 4. Experimental results for Rubik’s Cube.

P, | «DD # of total

size perm. #T
Py 0 1 0
Py 63 10 72
Py 392 64 888
Ps 1789 385 5634

P, 6860 2232 34446
Ps 23797 12224 194406
Ps 84704 62360 1012170
Pr | 290018 289896 4752582
Ps [608666| 1159968|19087266
Py | 580574| 3047716|50272542
Pp| 18783| 3671516|60540732
Py 511|{3674160|60579900
Py 511|3674160|60579900

5.2 Analysis of Rubik’s Cube

Rubik’s Cube™4is one of the most popular puzzles related to permutation group the-
ory, and 7DD can be useful for analyzing it. Here, we focus only on the moves of the
eight corner cubes. Figure 11 illustrates our assignment of the items to all the 24 faces
of the corner cubes. Then we can describe 90° moves along the X-, Y- and Z-axis as
follows.

T = T(3,5)7(3,17)7(3,15) T(1,6) 7(1,16) 7(1,14) 7(2,4) T(2,18) 7(2,13)

Ty = T(2,14)7(2,24) T(2,12) 7(3,13) 7(3,23) 7(3,10) T(1,15) 7(1,22) T(1,11)

Tz = T(1,10)T(1,7)T(1,4) 7(3,12) 7(3,9) 7(3,6) 7(2,11) 7(2,8) 7(2,5)

where all possible permutations of at most one of the primitive moves (+90°, —90°,
and 180° for each axis) are described as follows.

P1=7re+7Tx+7rx2+7rx3+7ry+7ry2+7ry3+7rz+7rz2—|—7rz3

Now we can generate the set of permutations for up to k¥ moves by using the following
simple iterative formula.

P,=P, 1 xP (for k > 2)

Similarly to the case of permutation networks, we can find a fixed point m such
that Py41 = Py, for any k > m. If we ignore all edge and center cubes, P, contains
all meaningful patterns for the eight corner cubes. Note that the cube {19,20,21} is
fixed to the original position in order to eliminate symmetric patterns.

Table 4 shows the result of generating 7DDs for the P;’s. We can see that the
number of all possible patterns of the corner cubes is 3,674,160. We confirmed that
11 moves are sufficient to generate all possible patterns, in other words, any pattern
of the corner cubes can be returned to the original positions in 11 or fewer moves. As
a result, this requires only 511 decision nodes of 7DDs for representing all patterns,
and Pg reaches a peak at a 7DD size of 608,666. The computation time for generating
all 7DDs was 207 seconds.

After generating the wDDs for the Pj’s, we can analyze various properties of
Rubik’s Cube. For example, we can explore patterns where only two corner cubes are
moving and the other six cubes remain at their original positions. Such patterns can



be detected by cofactor operations as follows.

Sk = Py.cofact(9,9).cofact(11, 11).cofact(15,15)
.cofact(17,17).cofact(21,21).cofact(23,23)

Our experiment shows that, for £ < 9, S only includes 7.. For £ = 10, we discover
(2,3,1,6,4,5), (3,1,2,5,6,4), (4,5,6,1,2,3) and (6,4,5,2,3,1), and by using the maximal
number of moves (k = 11), we arrive at (6,4,5,2,3,1). After such a pattern is detected,
it is not difficult to find a sequence of moves which generates it. We can apply one of
the primitive moves to the final pattern in order to obtain a candidate for a preceding
pattern, and we check for its existence in Pj,_;. At least one of the candidates must
be in P, and then we can repeat the process until we reach P;.

Although we have considered only the corner cubes, Rokicki et al. [7] recently
confirmed that all patterns of the Rubik’s cube can be solved as few as 20 moves,
and this is the exact minimum. They applied some mathematical pruning and used
a network of PCs for massive parallel computation amounting to a total of 35 CPU
years. Although the straight-forward application of 7DDs to this problem might cause
memory overflow, we nevertheless believe that it will be useful for accelerating such
kind of problem solving.

6 Conclusion

In this paper, we proposed a new idea of decision diagrams for manipulating sets of
permutations. The method of #DDs provides hints about the application of state-
of-the-art SAT techniques used for solving combinatorial problems to permutational
problems. There is a rich body of research in group theory led by Galois and many
researchers in discrete mathematics [3]. We can expect much future work in this area,
for example, developing software tools for studying group theory, considering many
other practical applications, implementing various other operations for sets of permu-
tations and considering extended models, such as sets of k-out-of-n permutations or
multisets of permutations.
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