
Minimally Unsatisfiable Boolean Circuits

Anton Belov and Joao Marques-Silva

Complex and Adaptive Systems Laboratory
School of Computer Science and Informatics

University College Dublin, Ireland
{anton.belov,jpms}@ucd.ie

Abstract. Automated reasoning tasks in many real-world domains involve anal-
ysis of redundancies in unsatisfiable instances of SAT. In CNF-based instances,
some of the redundancies can be captured by computing a minimally unsatisfiable
subset of clauses (MUS). However, the notion of MUS does not apply directly to
non-clausal instances of SAT, particularly those that are represented as Boolean
circuits. In this paper we identify certain types of redundancies in unsatisfiable
Boolean circuits, and propose a number of algorithms to compute minimally un-
satisfiable, that is, irredundant, subcircuits.

1 Introduction

Understanding the causes of unsatisfiability of sets of Boolean constraints is a problem
of both theoretical and practical interest. Over the last decade, a large number of algo-
rithms for identifying minimally unsatisfiable subformulas (MUSes) of CNF formulas
have been developed. Recent accounts of practical algorithms can be found in [3, 2,
8], and the current theory of CNF-based MUSes in [6]. However, in many settings the
original problem representation is not CNF formulas, but arbitrary Boolean formulas or
circuits. For example, in hardware model checking, the next state logic can be repre-
sented as a Boolean circuit. Also, for predicate-based abstraction [10], it is necessary to
compute MUSes starting from circuit structures. A fairly straightforward observation
is that computing an MUS from a clausal representation of a circuit may not result in
a circuit. In some contexts this is not a significant issue, but in others it can represent
an important drawback. For example, circuit designers are likely to prefer to analyze a
Boolean circuit than a set of apparently unrelated clauses. As a result, it is of interest to
be able to compute a non-clausal Boolean formula or circuit that represents a minimal
source of unsatisfiability. Early examples of work addressing minimal sources of un-
satisfiability in non-clausal formulas include [6, 11]. However, these early attempts are
only applicable in restricted cases, and so do not provide a general solution.

This paper contains the following main contributions. First, the paper formalizes
the notion of minimally unsatisfiable circuits. Second, the paper proposes algorithms
for the computation of minimally unsatisfiable subcircuits of Boolean circuits (circuit
MUSes). Third, the paper investigates the relationship between circuit MUSes and the
recently proposed notion of group oriented MUSes [10]. Experimental results confirm
the practical efficiency of the proposed algorithms, and the usefulness of dedicated
techniques.

2 Preliminaries

Propositional formulas are constructed in terms of a countably infinite set of proposi-
tional variables, logical constants F and T and a set logical connectives (in this paper,
we assume this set to be {¬,∨,∧}). We denote the set of all propositional formulas
by PROP, and when α ∈ PROP the set of propositional variables that occur in α by
V ar(α). A truth-value assignment (or simply, assignment) for α ∈ PROP is function
h mapping V ar(α) ∪ {F, T} into the set {0, 1} in such a way that h(F) = 0 and
h(T) = 1. An assignment h is extended naturally to all subformulas of α. A formula α
is satisfiable if there is an assignment h such that h(α) = 1.

Propositional formulas in which the negation connective applies only to variables
are said to be in the Negation Normal Form (NNF). A literal is a propositional variable
or its negation, a clause is a disjunction of literals. A formula is said to be in the Con-
junctive Normal Form (CNF) if it is a conjunction of clauses. Formulas in CNF are often
represented using set notation, and treated as sets of clauses – we use this representation
in this paper.

For a formula α ∈ PROP, the polarity of a subformula α′ of α is positive (resp.
negative) if α′ is in the scope of an even (resp. odd) number of negation connectives.
We write pol(α′) = 1 (resp. pol(α′) = −1) when the polarity of α′ is positive (resp.
negative). Recall that if pol(α′) = 1, then for any assignment hwe have h(α(α′/F)) ≤
h(α) ≤ h(α(α′/T)) – the inequalities are reversed when pol(α′) = −1. Here α(α′/γ)
denotes the formula obtained from α by replacing the subformula α′ with the logical
constant γ.

Let G be a countably infinite set of gate variables (or simply gates). A Boolean
circuit over G is a finite set C of equations of the form g = f(g1, . . . , gn), where
g, g1, . . . , gn ∈ G, and f : {0, 1}n → {0, 1} is a Boolean function, with the addi-
tional requirements that (i) each g ∈ G appears at most once as the left hand side in
the equations in C, and (ii) the underlying directed graph 〈G,E(C)〉, where E(C) =
{〈g, g′〉 ∈ G×G | g = f(. . . , g′, . . .) ∈ C}, is acyclic. We refer to the elements of
E(C) as wires, and to the graph 〈G,E(C)〉 as the circuit graph of C. If the equation
g = f(g1, . . . , gn) is in C then g is an f -gate (or, of type f), the equation is denoted by
eqg . When no ambiguity is possible, we write g ∈ C to denote eqg ∈ C.

For a gate g, the set of its children (resp. parents) in the circuit graph is called the
fanin (resp. fanout) of g and is denoted by FI(g) (resp. FO(g)). A gate with the empty
fanin (resp. fanout) is an input gate (resp. output gate). A gate that is neither an input
nor an output is an internal gate. The sets of input gates and output gates in C are
denoted by Inputs(C) and Outputs(C), respectively.

An assignment for a circuit C, is a function h : Inputs(C) → {0, 1} extended in
the natural way to all gates in C – that is, for each g = f(g1, . . . , gn) ∈ C, h(g) =
f(h(g1), . . . , h(gn)). Satisfiability for Boolean circuits can be defined in the following
way: for each circuit C fix a designated output gate outC ∈ Outputs(C). Then C is
satisfiable (with respect to outC) if there exists an assignment h such that h(outC) = 1,
otherwise C is unsatisfiable. The polarity of gates in C with respect to the designated
output outC can be defined in terms of paths in the circuit graph and the monotonicity
of functions that appear on these paths.

3 Definitions of minimal unsatisfiability

We begin by reviewing the well-known definition of minimal unsatisfiability for formu-
las in CNF, and some of the existing proposals for generalization of minimal unsatisfi-
ability to non-clausal propositional formulas.

Definition 1. A CNF formula F is minimally unsatisfiable if F is unsatisfiable, and for
any clause c ∈ F , the formula F \ {c} is satisfiable.

As in [6], by MU we denote the set of minimally unsatisfiable formulas in CNF. The
set of minimally unsatisfiable subformulas of a CNF formula F , in symbols MUS(F)
is defined as MUS(F) = {F ′ | F ′ ⊆ F and F ′ ∈MU}.

A definition of minimal unsatisfiability for propositional formulas in NNF has been
proposed in [6]. Let α be an NNF formula, and Tα be the tree representation α. Consider
any subtree Tα′ of Tα whose root is either an ∨-node or a literal, and that is a succes-
sor of an ∧-node. Then, formula α′ represented by Tα′ is called an or-subformula of
α. The minimal unsatisfiability can be defined with respect to the elimination of or-
subformulas.

Definition 2 (cf. [6]). An NNF formula α is minimally unsatisfiable if α is unsatisfiable,
and for any or-subformula α′ of α, the formula produced by the elimination of α′ from
α is satisfiable.

We denote the set of minimally unsatisfiable, according to Definition 2, NNF formulas
by MUNNF (it is MU∗ in [6]). Note that a syntactic elimination of a subformula does
not necessarily yield a well-formed formula, as such, the term “elimination” in this def-
inition implies an additional simplification. Nevertheless, given an NNF formula α one
can define a set MUSNNF(α) by analogy with CNF – this set contains all formulas in
MUNNF that can be obtained from α via elimination of any number of or-subformulas
(including none). It is not difficult to see that on the domain of formulas in CNF, Defi-
nition 2 captures the same set of formulas as Definition 1.

A number of notions of minimal unsatisfiability for temporal formulas in LTL have
been proposed in [11]. One of these notions, when specialized to the (classical) propo-
sitional logic (which is a fragment of LTL) results in the following definition:

Definition 3 (cf. [11]). A propositional formula α is minimally unsatisfiable if α is
unsatisfiable, and the replacement of any of its positively (resp. negatively) polarized
subformula by the logical constant T (resp. F) produces a satisfiable formula.

By MUPROP we denote the set of minimally unsatisfiable, according to Definition 3,
propositional formulas. Given a propositional formula α, the set MUSPROP(α) can be
defined by analogy with the definition ofMUSNNF(α). Note that Definition 3 captures
the same set of formulas in NNF as Definition 2, that is MUNNF =MUPROP ∩NNF.

The notions of minimal unsatisfiability presented in this section, and the related
notions of MUS, both in clausal and non-clausal domains, rely on some basic operation
with certain properties. Formally, we can describe such operation by a binary relation
on a set of formulas. For example, in the case of CNF the basic operation is the removal
of a single clause, and the corresponding relationRCNF on the set of CNF formulas is:

〈F, F ′〉 ∈ RCNF if and only if ∃c (F ′ = F \ {c}). (1)

Then, a CNF F ∈ MU if F is unsatisfiable, and any F ′ ∈ RCNF(F) is satisfiable.
In addition, given a CNF F , the set MUS(F) is defined simply as R∗CNF(F) ∩MU.
The relations RNNF and RPROP on the set of propositional formulas that describe the
operations used in the definitions ofMUNNF andMUPROP can be defined analogously.

In general, given a set LE of logical entities with a defined notion of satisfiability
(for example, logical formulas, or Boolean circuits), and a binary relationR on LE, we
can define the set MULE(R) of minimally unsatisfiable, with respect to R, members
of LE as

MULE(R) = {L ∈ LE | L is unsatisfiable, and any L′ ∈ R(L) is satisfiable },

and, given L ∈ LE, the related set

MUSLE(L,R) = R∗(L) ∩MULE(R).

However, for some relations R, the sets defined in this way might not capture the in-
tuitive meaning of minimal unsatisfiability – the irredundancy. As such, we propose a
number of characteristic properties of R that, albeit somewhat imprecise, aid in con-
structing intuitively meaningful definitions of minimal unsatisfiability and MUS.

Property 1. R has to be satisfiability preserving, that is if L ∈ LE is satisfiable, then
any L′ ∈ R(L) is satisfiable.

This property ensures that minimal unsatisfiability defined using R captures a strong
notion of irredundancy – if L is in MULE(R), then every L′ inR+(L) is satisfiable.

Property 2. For any unsatisfiable L ∈ LE,R(L) 6= ∅.

This property of R prevents definitions of minimal unsatisfiability that are vacuous –
that is, elements L of MULE(R) that are minimally unsatisfiable simply because the
basic operation captured by the relationR cannot be applied to L.

Property 3. Every L′ ∈ R(L) is in some sense “smaller” than, and is “close” to L.

This property can be made precise by defining a suitable order and a metric on LE,
however for this paper we will rely on its intuitive meaning. Note that in general L′ ∈
R(L) is not a necessarily a “sub-object” of L – in fact, among the definitions presented
above, it is only in the case of CNF, where L′ is a sub-formula of L.

In the next section we propose two relations on the set of Boolean circuits that
satisfy the above requirements, and give rise to intuitively meaningful definitions of
minimally unsatisfiable Boolean circuits and circuit MUSes.

4 Minimally Unsatisfiable Boolean Circuits

Consider a Boolean circuit C over a set of gates G – recall that C is a finite set of
equations eqg of the form g = f(g1, . . . , gn). Let outC be the designated output of C,
and assume that C is unsatisfiable, that is, for every assignment h for C, h(outC) = 0.
Consider the situation when there exists a gate g ∈ C such that C \ {g} is unsatisfiable.
Then the gate g, or more precisely the equation eqg , is redundant with respect to the

g2

a b

∧

in

s

g1

out

c ∧ ∨ ∨

in

¬¬

∧

(a)

g2

a b

∧

in

s

g1

out

c ∧ ∨

in

¬¬

∧

in

(b)

Fig. 1. (a) An example circuit C (a half-adder with both the carry c and the sum s set to 1). C is
unsatisfiable. (b) The circuit C′ = C \ {g1} is also unsatisfiable, and since C′ ∈ Rg(C), the
circuit C is not gate-minimally unsatisfiable. However, the circuit C′ is, and is a gate-MUS of C.

unsatisfiability of C. This suggests a possible gate-based definition of minimal unsat-
isfiability for circuits: a circuit is unsatisfiable, and no gate equation can be removed
without making it satisfiable. We will formalize this definition shortly, but first present
a slightly different perspective.

Each gate equation g = f(g1, . . . , gk) in the circuit captures a relationship, a con-
straint, between the values of g and the values of gates in FI(g). When the gate is
redundant, the relationship of g with all these values is redundant. However, when the
gate is not redundant, it does not necessarily mean that the relationship of g with all
gates is not redundant. It is possible that only some of these relationships are important
for unsatisfiability, while others can be dropped. These individual relationships corre-
sponds to the wires in the circuit – i.e. the edges in the circuit graph – that connect the
gate to the gates in its fanin. This suggests a different, wire-based, definition of minimal
unsatisfiability for circuits – it is more refined than the gate-based, in that a minimally
unsatisfiable circuit from the gate view, is not necessarily minimally unsatisfiable from
the wire point of view.

With this motivation, we proceed to formalizing the two proposed types of minimal
unsatisfiability.

4.1 Gate-based minimal unsatisfiability

Let CIRC be a set of Boolean circuits over the set of gates G, and letRg ⊆ CIRC2 be
defined as follows:

〈C,C ′〉 ∈ Rg if and only if outC = outC′ and ∃g ∈ C C ′ = C \ {g}.

When C ′ = C \ {g} we have Inputs(C ′) = Inputs(C) ∪ {g}, thus the effect of
the removal of eqg from C is that g becomes an unconstrained input. As an example,
consider the circuit C in Figure 1(a), and the circuit C ′ obtained from C by removing
gate g2 (Figure 1(b)). We now establish the basic properties of the relation Rg , that,
as argued in Section 3, will afford a meaningful definition of minimally unsatisfiable
circuit and circuit MUS based onRg .

Proposition 1. Let C be a satisfiable Boolean circuit. Then, for any C ′ ∈ Rg(C), C ′
is satisfiable.

Proof. Let h be satisfying assignment for C, and let C ′ = C \ {g}. Then, h′ = h ∪
{〈g, h(g)〉} is a satisfying assignment for C ′. ut

Hence, Rg is satisfiability preserving (Property 1). Further, we have that for every un-
satisfiable circuitC,Rg(C) 6= ∅, becauseC must have at least one gate (Property 2). Fi-
nally, when C ′ ∈ Rg(C), C ′ ⊂ C, as such C ′ is smaller than C in terms of the number
of gate definitions, and is close to C as the two circuits differ by exactly one gate (Prop-
erty 3). Thus, paraphrasing the definitions ofMUCIRC(Rg) andMUSCIRC(C,Rg) we
have:

Definition 4. A Boolean circuit C is gate-minimally unsatisfiable, if C is unsatisfiable
and for every gate g ∈ C, the circuit C \ {g} is satisfiable.

Definition 5. Let C be an unsatisfiable Boolean circuit. Then the circuit C ′ is a gate-
MUS of C if C ′ ⊆ C and C ′ is gate-minimally unsatisfiable.

We denote the set MUCIRC(Rg) as MUg , and a set MUSCIRC(C,Rg) as MUSg(C)
for the rest of this paper. The circuit C ′ in Figure 1(b) is gate minimally unsatisfiable,
and is the gate-MUS of the circuit C in Figure 1(a).

In Section 3 we have emphasized the fact that the presented definitions of mini-
mal unsatisfiability are strict generalizations: on the domain of CNF formulas, the set
MUNNF coincides with the set MU, while on the domain of NNF formulas, the set
MUPROP coincides with the set MUNNF. We now demonstrate that the proposed def-
inition of gate-based minimal unsatisfiability for Boolean circuits, despite its intuitive
appeal, is in a sense too coarse.

Take any α ∈ PROP, and let sm : V ar(α) 7→ G be some injective function
(“subformula map”). We are going to extend sm to all subformulas of α, and, simulta-
neously, associate each subformula α′ of αwith a Boolean circuitCα′ . The construction
is defined inductively on the structure of α as follows:

(i) if α = p, then let Cα = ∅, and outC = sm(p);
(ii) if α = β ∧ γ, then take a fresh gα ∈ G, and let

Cα = Cβ ∪ Cγ ∪ {gα = ∧(outCβ , outCγ)},

and let outCα = gα, and sm = sm ∪ {〈α, gα〉}.
(iii) the constructions for the cases α = β ∨ γ and α = ¬β are analogous to (ii).

Thus, the circuit graph of Cα is tree-like, with the possible exception of the inputs.
Furthermore, for every gate g ∈ Cα, the polarity pol(g) is the same as pol(sm−1(g)),
and for every non-variable subformula α′ of α, pol(α′) = pol(sm(α′)).

Let h be an assignment to V ar(α), then we can define define a corresponding as-
signment for Cα in a straightforward manner:

hsm = {〈 sm(p), h(sm(p)) 〉 | p ∈ V ar(α)}.

Clearly, for any subformula α′ of α, h(α′) = hsm(sm(α′)). Similarly, given an as-
signment h for circuit Cα we can define the corresponding assignment hsm−1 with the
analogous property.

Theorem 1. For every propositional formula α, if α ∈ MUPROP , then Cα ∈ MUg ,
however the converse doesn’t hold.

Proof. It is easy to see that formula α is unsatisfiable if and only if so is the circuit Cα.
Towards a contradiction, assume that α ∈ MUPROP, but Cα /∈ MUg . Since α is

unsatisfiable, so is Cα and we conclude that there exists g ∈ Cα such that the circuit
C ′ = Cα \ {g} is unsatisfiable. Let α′ = sm−1(g), and assume pol(α′) = 1. Then
the formula α(α′/T) must be unsatisfiable, as otherwise, if h is a satisfying assignment
for α(α′/T), then hsm ∪ {〈g, 1〉} satisfies C ′. Since α(α′/T) ∈ RPROP we have
α /∈MUPROP.

One of the reasons that the reverse implication does not hold is that the operation
RPROP allows to substitute the constants T/F for variables in the formula, while an
equivalent of such operation is not captured by Rg . Consider for example the formula
α = q ∧ (¬q ∧ r). Then, α /∈ MUPROP because the formula α′ = q ∧ (¬q ∧ T) is
still unsatisfiable. However, the corresponding circuit Cα = {out = ∧(q, g1), g1 =
∧(g2, r), g2 = ¬(q)} is gate-minimally unsatisfiable. ut

Note that the formula α used as a counterexample in the above proof is a propositional
representation of the CNF formula F = {q,¬q, r} and soRg gives rise to the definition
of minimal unsatisfiability that is too coarse on domain of CNF formulas as well.

The counterexample in the proof of Theorem 1 might suggest that Rg could be re-
fined if it were to allow the replacement of inputs by constants according to their polar-
ity. Unfortunately, this suggestion poses an immediate problem: in unsatisfiable circuits
there must be non-polarized inputs. Selecting an arbitrary constant for non-polarized in-
puts results in satisfiability non-preserving operation. Further, the following, intuitively
minimally unsatisfiable example circuit C = {out = ∧(p, g1), q1 = ¬(p)} would
not be minimally unsatisfiable, as we could replace p with 0 (or 1) and still obtain an
unsatisfiable circuit.

The real reason for the fact that in certain cases unsatisfiable formulas that are not in
MUPROP map to gate-minimally unsatisfiable circuits (i.e.MUg is in this sense coarser
than MUPROP) is that RPROP allows the replacement of an individual occurrence of
a variable in the formula without affecting other occurrences of this variable. Multiple
occurrences of a variable p in formula α are represented by multiple wires connecting
the input sm(p) in the circuit Cα, hence an operation that would allow to “break”
wires in the circuit would address this weakness of Rg . Thus, in conjunction with the
discussion at the beginning of this section, we have a strong motivation for the definition
of wire-based minimal unsatisfiability of Boolean circuits.

4.2 Wire-minimal unsatisfiable circuits

Let I be a set of gates disjoint fromG, let CIRC be a set of Boolean circuits overG∪I ,
and letRw ⊆ CIRC2 be defined as follows:

〈C,C ′〉 ∈ Rw if and only if outC = outC′ and ∃g, gk ∈ G, ∃i ∈ I such that
g = f(. . . , gk, . . .) ∈ C and C ′ = C \ {g} ∪ {g = f(. . . , i, . . .)}

g2

a b

∧

in

s

g1

out

c ∧

∨

in

¬¬

∧

∧

(a)

g2

a b

∧

in

s

g1

out

c ∧

∨

in

¬¬

∧

∧

i2 in

(b)

g2

a b

∧

in

s

g1

out

c ∧

∨

in

¬¬

∧

∧

i2 in

i1 in

(c)

Fig. 2. (a) An example circuit C (also a half-adder with both the carry c and the sum s set to
1). C is unsatisfiable. (b) The circuit C1 obtained from C by removing the wire 〈g2, a〉, hence
C1 ∈ Rw(C); C1 is also unsatisfiable. (c) The circuit C2 obtained from C1 by removing the
wire 〈g1, b〉, hence C2 ∈ Rw(C). C2 ∈ MUw, and is a wire-MUS of C (and C1)

In words, when C ′ ∈ Rw(C), the circuit C ′ can be obtained by replacing some wire
〈g, gk〉 in the circuit graph of C with a wire 〈g, i〉, where i is a fresh input gate. Thus,
effectively the operation eliminates the connection, or constraint, between the values of
gk and g in C. Note that only that wires that connect gates in G can be replaced, as
such, once replaced, a wire cannot be replaced again. As such we will often refer to this
operation as the removal of the wire 〈g, gk〉 from C.

As an example, consider the circuit C depicted in Figure 2(a), and the circuit C1 in
Figure 2(b) that is obtained from C by removing the wire {g2, a}. Thus, C1 ∈ Rw(C).
The circuit C2 in Figure 2(c) is obtained from C1 by removing the wire 〈g1, b〉, as
such C2 ∈ Rw(C1). We use this opportunity to point out that both C1 and C2 are
unsatisfiable, but C is gate minimally unsatisfiable. In order to further motivate the
definition of minimal unsatisfiability based on the relation Rw, we establish the basic
properties of this relation outlined in Section 3.

Proposition 2. Let C be a satisfiable Boolean circuit. Then, for any C ′ ∈ Rw(C), C ′
is satisfiable.

Proof. Let h be a satisfying assignment for C, and assume that C ′ was obtained from
C by replacing some wire 〈g, gk〉 with 〈g, i〉, where i is a fresh input gate. Then, the
assignment h′ = h ∪ {〈i, h(gk)〉} is satisfying for C ′. ut

Thus, Rw is satisfiability preserving (Property 1). Further, every unsatisfiable circuit,
with the exception of Cd = {out = 0}, has at least one wire, as such for every un-
satisfiable C 6= Cd, Rw(C) 6= ∅. Hence, Property 2 almost holds – the rather degen-
erate circuit Cd is the only case that violates this property, note, however, that Cd ∈
MUCIRC(Rw), albeit vacuously. Finally, with respect to Property 3, when 〈C,C ′〉 ∈
Rw, C ′ is not a subcircuit of C (but neither are the formulas related by RNNF or
RPROP). It is however, smaller than C in the sense that it has one less constraint be-
tween the values of gates. Thus, paraphrasing the definitions of MUCIRC(Rw) and
MUSCIRC(C,Rw) we have:

Definition 6. A Boolean circuit C is wire-minimally unsatisfiable if C is unsatisfiable
and for any wire 〈g, gk〉 in C, the circuit C ′ obtained by the replacement of this wire
with 〈g, i〉 for a fresh input i is satisfiable.

Definition 7. Let C be an unsatisfiable Boolean circuit. Then the circuit C ′ is a wire-
MUS of C, if C ′ can be obtained from C by removing zero or more wires, and C ′ is
wire-minimally unsatisfiable.

We denote the sets MUCIRC(Rw) and MUSCIRC(C,Rw) as MUw and MUSw(C),
respectively. The circuit C2 depicted in Figure 2(c) is wire-minimally unsatisfiable, and
is a wire-MUS of both the circuits C and C1 in Figures 2(a),2(b).

The example in Figure 2 demonstrates that there are gate-minimally unsatisfiable
circuits that are not wire-minimally unsatisfiable. The following theorem shows that,
with the exception of circuits with constant gates, every wire-minimally unsatisfiable
circuit is gate-minimally unsatisfiable. Let CIRCnc ⊂ CIRC be the set of Boolean
circuits without constant gates. Then,

Theorem 2. For every Boolean circuit C ∈ CIRCnc, if C ∈ MUw, then C ∈ MUg ,
however the converse does not hold.

Proof. We prove the contrapositive: assume that C ∈ CIRCnc is unsatisfiable and
C /∈MUg , we show that C /∈MUw. By assumption ∃g ∈ C, such that Cg = C \ {g}
is unsatisfiable. Let g = f(g1, . . . , gk), let {i1, . . . , ik} be a set of fresh input gates,
and consider the circuit Cw = C \ {g} ∪ {g = f(i1, . . . , ik)}. Then, Cw must be
unsatisfiable, as otherwise a satisfying assignment h for Cw can be used to construct a
satisfying assignment h ∪ {〈g, f(h(i1), . . . , h(ik))〉} for Cg . Note that Cw ∈ Rkw(C),
and therefore for some C ′ ∈ Rw(C), C ′ is unsatisfiable because Rw is satisfiability
preserving. We conclude that C /∈MUw.

The fact that the converse does not hold is demonstrated in Figure 2. ut

The circuit depicted on the right margin illustrates the issue with

g2

a

g1

out

0

⊕

¬

∧

in

⊕
the constant gates. While the constant gate 0 can be removed from this
circuit (recall that this is equivalent to replacing it by an unconstrained
input) without breaking its unsatisfiability, removing any of the wires
leading from this gate will make the circuit satisfiable. Thus, by al-
lowing the removal of wires, we get an almost refinement of MUg .
The following theorem shows that we also gain the equivalence with
MUPROP, and as such, with MUNNF and MU (the sets of minimally unsatisfiable
formulas in NNF and CNF, respectively).

Theorem 3. For every propositional formula α, α ∈ MUPROP, if and only if Cα ∈
MUw.

Proof. We prove the contrapositives. Recall that Cα is a circuit constructed using the
structure of α (Section 4.1).

Assume α is unsatisfiable and α /∈MUPROP, we show that α /∈MUw. Without the
loss of generality, let α′ be a positively polarized subformula of α such that the formula
α(α′/T) is unsatisfiable. Since pol(α′) = 1, the formula α(α′/F) is also unsatisfiable.

Note that α′ must be a proper subformula of α because the formula T , which is the
result of substitution of α itself by T , is obviously satisfiable. As such, let β be the
parent of α′ in the formula tree of α. Then the circuit C ′ obtained from C by removing
the wire 〈sm(β), sm(α′)〉 is also unsatisfiable. Hence, C /∈MUw.

Assume now thatCα is unsatisfiable andCα /∈MUw, we show that α /∈MUPROP.
Let 〈g1, g2〉 be the wire in Cα that can be removed to obtain an unsatisfiable circuit C ′.
If g2 is not an input gate, then let α2 = sm−1(g2), otherwise let α2 be the occurrence of
the variable sm−1(g2) in the subformula sm−1(g1). Then, both α(α2/T) and α(α2/F)
must be unsatisfiable. Therefore, α /∈MUPROP. ut

5 Computing Circuit MUSes

In this section we propose possible solutions to the problem of computing a gate-MUS
or a wire-MUS of a given unsatisfiable circuit C. For reasons of clarity, in this section
we assume that C does not have constant gates, that is C ∈ CIRCnc.

Most of the high-performing algorithms for computation of CNF-based MUSes are
based on the identification of so called transition clauses [3] in unsatisfiable CNF for-
mulas. A clause c ∈ F is called a transition clause, if F is unsatisfiable but F \ {c} is
satisfiable. The key property of the transition clauses is that if c is a transition clause
for F , then c belongs to all MUSes of F . Then, given an unsatisfiable formula F , a
deletion-based MUS extractor picks a clause c ∈ F , and tests the formula F ′ = F \{c}
for satisfiability. If F is satisfiable, then c is final – it is a part of constructed MUS. Oth-
erwise, the algorithm continues with the formula F ′. When all clauses are final, the
current formula is an MUS of the initial formula F . In most cases, this basic extraction
algorithm can be accelerated significantly when the underlying SAT solver supports
incremental SAT solving, and is capable of producing proofs of unsatisfiability.

It is not difficult to see that in the case of Boolean circuits, the analogous concepts
– transition gates, and transition wires – can be defined, and possess similar properties.
As such, the existing CNF MUS algorithms, such as the deletion-based algorithm de-
scribed above, can be adapted to the circuit MUS problem. It is plausible, however, that
in the case of circuits the structure can be used to accelerate the circuit MUS computa-
tion – we present empirical data to support this claim in Section 6.

Unfortunately, the publicly available efficient circuit SAT solvers, such as [4], nei-
ther expose an incremental interface, nor produce proofs of unsatisfiability. Thus, it is
advantageous to develop CNF-based techniques for circuit MUS extraction in order to
capitalize on the continuing progress of CNF-based SAT technology.

Let C be a Boolean circuit. For each g ∈ C, let Ts(g) be the set of clauses ob-
tained by the Tseitin transformation of g to CNF [12], and thus, Ts(C) = {outC} ∪⋃
g∈C Ts(g) be the Tseitin encoding of C. It is tempting to compute CNF-based M =

MUS(Ts(s)), and then “inflate” each clause in M to obtain the circuit

CM =
⋃
c∈M
{g | c ∈ Ts(g)}.

In general, the resulting circuit CM is not a gate-MUS of C, and so CNF MUS ex-
tractors are not applicable to circuit MUS problem. However, circuit MUSes can be
computed using the tools developed for the recently proposed problem of group ori-
ented MUS extraction [10]:

Definition 8 ([5]). Given an explicitly partitioned unsatisfiable CNF formula F = D∪⋃
G∈G G, where G = {G1, . . . , Gk}, and D and each Gi are disjoint sets of clauses, a

group oriented MUS of F is a subset G′ of G such that D ∪
⋃
G∈G′ G is unsatisfiable,

and, for every G′′ ⊂ G′, we have that D ∪
⋃
G∈G′′ G is satisfiable.

It is not difficult to see that if we let GC = {Ts(g) | g ∈ C}, and let D = {outC},
then the group oriented MUS of the formula FC = D∪

⋃
G∈GC G corresponds to a gate-

MUS of the circuit C, and vice-versa. Thus, gate-MUSes for circuits can be computed
using group oriented MUS extractors, for example SAT4J [7].

The problem of wire-MUS computation for a given circuit C, however, cannot be
solved directly by computation of group oriented MUS of the formula FC . Consider for
example a gate g ∈ C defined as g = ∧(g1, g2, g3). The set Ts(g) contains four clauses
cm, c1, c2, c3, where

cm = g ∨ ¬g1 ∨ ¬g2 ∨ ¬g3, c1 = ¬g ∨ g1, c2 = ¬g ∨ g2, c3 = ¬g ∨ g3.

Assume now that we remove the wire 〈g, g1〉 from C, that is we replace 〈g, g1〉 with
〈g, i1〉, where i1 is a fresh input, to obtain a circuit C ′. Then, in C ′ the set Ts(g)
contains the clauses c′m, c

′
1, c2, c3, where

c′m = g ∨ ¬i1 ∨ ¬g2 ∨ ¬g3, c′1 = ¬g ∨ i1.

Since the variable i1 does not appear in any other clause of Ts(C ′) except c′m and c′1,
from the perspective of the satisfiability the net effect of removing the wire 〈g, g1〉 from
C on Ts(C) is simply the removal of clauses cm and c1 from Ts(C). Formally, the
CNF formula Ts(C ′) is satisfiable if and only if the formula F = Ts(C) \ {cm, c1} is
satisfiable. The “only if” direction is obvious, since F ⊂ Ts(C ′). For the “if” direction,
let h be satisfying for F – if h(g) = 1, then c′m is satisfied in Ts(C ′), and we assign
1 to i1 to satisfy c′1; if h(g) = 0, then c′1 is satisfied, and we assign 0 to i1 to satisfy
c′m. Similarly, the effect of removing the wire 〈g, g2〉 from C ′ amounts to removing the
clause c2 from Ts(C ′). Finally, the subsequent removal of 〈g, g3〉 results in the formula
with all clauses cm, c1, c2, c3 removed – note that this is equivalent to removing all
clauses in Ts(g) from Ts(C), and as such, removing the gate g from C. Indeed, as the
proof of Theorem 2 shows, removing all wires in the fanin of g ∈ C is equivalent to
removing the gate g itself.

We now point out that the problem of computing a wire-MUS of C could have
been mapped to group oriented MUS directly, if in Definition 8 the groups Gi were
not required to be disjoint. If this were the case, then we could set G1 = {cm, c1},
G2 = {cm, c2}, and G3 = {cm, c3} – note that the groups intersect on cm. Then, re-
moving the group G1 from the formula F , would result in the removal the clause cm
from G2 and G3. As an aside, this suggests a possible generalization of the definition
of the group oriented MUS problem. Meanwhile, we can still map wire-MUS prob-
lem to the group oriented MUS problem, though at the cost of adding extra variables.

We demonstrate the mapping using the previous example of g = ∧(g1, g2, g3) with
Ts(g) = {cm, c1, c2, c3}.

The idea is to add one extra variable for every intersecting group. Let l1, l2 and l3
be three fresh variables, and let G∗1, G∗2 and G∗3 be the groups of clauses defined in the
following way:

G∗1 = {cm ∨ ¬l2 ∨ ¬l3, c1 ∨ ¬l1, l1}
G∗2 = {cm ∨ ¬l1 ∨ ¬l3, c2 ∨ ¬l2, l2}
G∗3 = {cm ∨ ¬l1 ∨ ¬l2, c1 ∨ ¬l3, l3}

Then, for example, the removal of group G∗1 makes the variable l1 unconstrained, and,
as such, the first clause in both groups G∗2 and G∗3 effectively becomes satisfied. It is
easy to see that this has the exact effect of the removal of the group G1 under the gener-
alized definition of group MUS that allows non-disjoint groups. The demonstrated tech-
nique for mapping non-disjoint group MUS problem to (disjoint) group MUS problem
can be applied in a general setting. We omit the formal definition of such mapping, and
the proofs of its correctness from this paper.

Intuitively, it seems plausible that the structure of a given instance of group oriented
MUS problem can provide additional information that allows to accelerate group-MUS
extraction. In the application of group-MUS to circuit-MUS computation problem, the
circuit structure can be used to deduce the relationships between groups which, in turn,
can be used to guide a group-MUS extractor. We propose two such techniques, and, in
the following section, demonstrate empirical evidence to their effectiveness.

One of the techniques is based on the following observation. Let g be a gate in C.
By D(g) let us denote the set of gates dominated by g, that is

D(g) = {g′ ∈ C | every path from g′ to outC in the graph of C includes g }.

Note that g ∈ D(g). Then the circuit C ′ = C \{g} is satisfiable if and only if the circuit
C ′′ = C \ {D(g)} is satisfiable. As such, during the gate-MUS extraction, rather than
testing the circuit C ′ for satisfiability, we can test the circuit C ′′. Since C ′′ is smaller
than C ′ the SAT test might be faster. In addition, if C ′′ is unsatisfiable, we remove a
potentially large set of gates at once, thus reducing the number of SAT checks. This,
domination based optimization can be improved further by the analysis of the satisfying
assignment for C ′′ in case it is satisfiable.

6 Empirical Study

To evaluate some of the ideas presented in this paper empirically, we implemented a
prototype circuit MUS extractor ncmuser. The extractor computes gate-MUSes by
mapping the gate MUS problem to group oriented MUS in the manner described in
the previous section. ncmuser interfaces with the group-MUS extractor (the group-
oriented version of MUSer [9]) by controlling the order in which the latter selects the
groups for removal. The mapping of the wire-MUS computation problem to the group
oriented MUS extraction problem described in the previous section is currently not used

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80

C
P

U
 t
im

e
 (

s
e
c
o
n
d
s
)

number of instances solved

RND
 TD

 TD+D
 TD+DS

Fig. 3. Effects of gate selection strategies on gate-MUS computation times.

– instead, for wire-MUS extraction ncmuser interfaces directly with an incremental
SAT solver (picosat version 935 [1]). The benchmark circuits for our experiments
were selected from the following sets:
(i) unsatisfiable (i.e. correct) sequential designs from the Hardware Model Checking Competi-

tion 2010 (http://fmv.jku.at/hwmcc10/) – combinational And-Inverter-Graph (AIG) circuits
were generated using aigtobmc (http://fmv.jku.at/aiger);

(ii) AIGs generated using Boolector (http://fmv.jku.at/boolector/) to bit-blast QF BV (theory of
bit-vectors) instances of the SMT Competition 2009; (http://www.smtcomp.org/2009/)

(iii) unsatisfiable circuits in ISCAS format from the fvp-unsat-1.0 and fvp-unsat-2.0
benchmark suites of M. Velev (http://www.miroslav-velev.com/sat benchmarks.html).

The objective of the first part of our empirical study was to investigate the effective-
ness of the structure-based techniques for gate-MUS extraction described in Section
5. We implemented four gate selection strategies in ncmuser: the random selection
(RND), the top-down traversal of the circuit (i.e. reverse topological order, TD), the
top-down traversal with the domination based optimization (TD+D), and, finally, the
strategy TD-D with the addition of the analysis of satisfying assignments (TD+DS).
From our set of benchmarks we selected a subset of 245 instances solvable with top-
down (TD) strategy given 5000 seconds of CPU time and 4 GB of RAM on HPC cluster
nodes consisting of two quad-core Intel Xeon E5450’s with 32 GB of RAM. From this
subset we selected 75 instances that were found to have between 10% to 90% of re-
dundant gates, and added 25 randomly selected timed-out instances. The results of the
comparative evaluation of the four gate-selection strategies are presented in Figure 3.
We note that the performance of gate-MUS extraction clearly improves with the amount
of the circuit-based structural information used to aid the computation.

The goal of the second part of our empirical study was to find out whether the redun-
dant wires do occur in practice. During the computation of wire-MUSes ncmuser uses
the top-down circuit traversal strategy. As wire-MUS extraction may require more SAT
calls than gate-MUS extraction, in wire-MUS extraction mode ncmuser was able to
solve 228 instances out of 245 described above. We found that out of these 228 instances

30 had over 50%, and 70 had over 10% of redundant wires after all the redundant gates
have been removed.

7 Conclusion

This paper addresses the problem of minimal unsatisfiability in Boolean circuits. The
paper starts by formalizing the gate-based and wire-based notions of minimally unsat-
isfiable circuits, and then proposes algorithms for the computation of gate-MUSes and
wire-MUSes of Boolean circuits. One key aspect is the tight relationship between circuit
and group-oriented MUS extraction [10, 5]. This applies both to gate-based and wire-
based minimal unsatisfiability. Another key aspect is that the extraction can be acceler-
ated by exploiting circuit structure. Experimental results, obtained on Boolean circuits
from different application domains, confirm the practical efficiency of the proposed
algorithms, and the usefulness of dedicated techniques. Finally, the general treatment
of minimal unsatisfiability used in this paper appears to be quite convenient. Future
work will investigate further the relationship between circuit and group-oriented MUS
extraction.

Acknowledgements We thank the anonymous referees for helpful comments. This
work is partially supported by SFI PI grant BEACON (09/IN.1/I2618).

References
1. A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation,

4:75–97, 2008.
2. C. Desrosiers, P. Galinier, A. Hertz, and S. Paroz. Using heuristics to find minimal unsatis-

fiable subformulas in satisfiability problems. J. Comb. Optim., 18(2):124–150, 2009.
3. É. Grégoire, B. Mazure, and C. Piette. On approaches to explaining infeasibility of sets of

Boolean clauses. In Int’l. Conf. on Tools with Artificial Intelligence, pages 74–83, 2008.
4. H. Jain and E. M. Clarke. Efficient SAT solving for non-clausal formulas using DPLL,

graphs, and watched cuts. In Proc. of the 46th Annual Design Automation Conference, pages
563–568, 2009.

5. M. Järvisalo, D. Le Berre, and O. Roussel. Rules of the 2011 SAT Competition.
http://www.satcompetition.org/2011/.

6. H. Kleine Büning and O. Kullmann. Minimal unsatisfiability and autarkies. In A. Biere,
M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, chapter 11,
pages 339–401. IOS Press, 2009.

7. D. Le Berre and A. Parrain. The Sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation, 7:59–64, 2010.

8. J. Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In Int’l
Symposium on Multiple-Valued Logic, pages 9–14, 2010.

9. J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In Proc. of SAT
2011, 2011.

10. A. Nadel. Boosting minimal unsatisfiable core extraction. In Formal Methods in Computer-
Aided Design, 2010.

11. V. Schuppan. Towards a notion of unsatisfiable cores for LTL. In Fundamentals of Software
Engineering, Third IPM Int’l Conference, pages 129–145, 2010.

12. G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies in
Mathematics and Mathematical Logic, Part II:115–125, 1968.

