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Abstract. Various verification techniques are based on SAT’s capability
to identify a small, or even minimal, unsatisfiable core in case the formula
is unsatisfiable, i.e., a small subset of the clauses that are unsatisfiable
regardless of the rest of the formula. In most cases it is not the core itself
that is being used, rather it is processed further in order to check which
clauses from a preknown set of Interesting Constraints (where each con-
straint is modeled with a conjunction of clauses) participate in the proof.
The problem of minimizing the participation of interesting constraints
was recently coined high-level minimal unsatisfiable core by Nadel [15].
Two prominent examples of verification techniques that need such small
cores are 1) abstraction-refinement model-checking techniques, which use
the core in order to identify the state variables that will be used for re-
finement (smaller number of such variables in the core implies that more
state variables can be replaced with free inputs in the abstract model),
and 2) assumption minimization, where the goal is to minimize the us-
age of environment assumptions in the proof, because these assumptions
have to be proved separately. We propose seven improvements to the re-
cent solution given in [15], which together result in an overall reduction
of 55% in run time and 73% in the size of the resulting core, based on our
experiments with hundreds of industrial test cases. The optimized proce-
dure is also better empirically than the assumptions-based minimization
technique.

1 Introduction

Given an unsatisfiable CNF formula ϕ, an unsatisfiable core (UC) is any subset
of ϕ that is unsatisfiable. The decision problem corresponding to finding the
minimum UC is a Σ2-complete problem [8]. Finding a minimal UC (a UC such
that the removal of any one of its clauses makes the formula satisfiable) is DP -
complete [17]1. There are many works in the literature on extracting minimum [8,
11], minimal [16, 3, 12, 21], or just small cores [22, 6, 4] — see [15] for an extensive
survey.
?? Currently on sabbatical at the Software Engineering Institute, Pittsburgh, PA, USA
1 DP is the class containing all languages that can be considered as the difference

between two languages in NP, or equivalently, the intersection of a language in NP
with a language in co-NP.



There are many uses to the core in SAT-based verification, typically related
to abstraction or decomposition. In most cases, however, it is not the core C itself
that is being used, rather C is processed further in order to check which Interest-
ing Constraints participate in the proof, where which constraints are interesting
is given as input to the problem. Hence we can assume that in addition to the
formula we are given as input a set of sets of clauses IC = {R1 . . . Rm}, where
each Ri is a set of clauses that together encode an interesting constraint. The
goal is thus to minimize the number of constraints in IC that have a non-empty
intersection with C. This problem was first mentioned in [12] and recently coined
the high-level minimal unsatisfiable core problem by Nadel [15], who observed
that in his experiments with industrial problems the number of clauses that be-
long to interesting constraints is on average about 5% of the clause database. In
fact in the verification group in Intel high-level cores are the only type of cores
that are being computed, and we are not aware of any use of the general core in
the EDA industry.

Two prominent examples of such techniques that are used in Intel and are
described in more detail in the above reference are:

– A popular abstraction-refinement model-checking is based on iterating be-
tween a complete model checker and a SAT-based bounded model checker [14,
9]. The model checker takes an abstract model, in which some of the state
variables are replaced with inputs, and either proves the property or returns
the depth in which it found a counterexample. In the latter case, this depth
is used in a bounded-model checking run over the concrete model, which may
either terminate with a concrete counterexample, or with an unsat answer.
In the latter case SAT’s capability to identify an unsatisfiable core is used
for identifying those state variables that are sufficient for proving that there
is no counterexample at that depth. All the clauses that contain a given
state variable (in any time-frame) constitute a constraint in IC. Those state
variables that participate in the proof define the next abstract model (these
are the state variables that are not replaced by inputs), which is a refine-
ment of the previous one. The process then reiterates until either the model
checker is able to prove the property or the SAT solver finds a concrete
counterexample.

– In formal equivalence verification (see, e.g., [10]), two similar circuits are ver-
ified to be functionally equivalent. This is done by decomposing the two cir-
cuits to ‘slices’ which are pair-wise verified for equivalence. The equivalence
of each such pair is verified against various assumptions on the environment.
In other words, rather than integrating a model of the environment with the
equivalence verification condition, various properties of the environment are
assumed, and added as constraints on the inputs of that condition. Then, if
the equivalence is proven, it is still necessary to verify that the assumptions
are indeed maintained by the environment. Each assumption is modeled with
a set of clauses. The unsatisfiable core obtained when checking the equiva-
lence is analyzed in order to find those assumptions that were used in the
proof. Hence, here each constraint in IC is a set of clauses that encode an



environment assumption. Here too the verification process attempts to min-
imize the high-level core in order to minimize the number of environment
assumptions that should be verified.

We will address the question of how to minimize the core in the next section.
A problem which is mostly orthogonal to minimization is how to make the SAT
solver emit a core once it determines that a formula is unsatisfiable. There are
two well-known approaches to solve this problem:

– Resolution-based. The first approach is based on the ability of many mod-
ern SAT solvers to produce a resolution proof in case the formula is unsat-
isfiable. The solver traverses the proof backwards from the empty clause,
and reports the clauses at the leaves as the core [22, 7]. This core is then
intersected with the sets of clauses in IC in order to find a high-level core.

– Assumptions-based. A second approach is based on the assumptions tech-
nique, which was first implemented in an early version of Minisat [5]. As-
sumptions are literals that are assigned true (as decisions) before any other
decision. If constraint propagation leads to flipping the assignment of one of
the assumptions to false, it means that with these assumptions the formula
is unsatisfiable. Minisat is capable of identifying which assumptions led to
this conflict, which is exactly what is needed for extracting a high-level core.
This can be done with clause selectors as follows: Let Ri be constraint in
IC and let {c1, . . . , cn} be the clauses that encode it. To each clause in this
set we add the literal ¬li, where li is a new variable. Then we add li to the
set of assumptions. Hence setting li to true activates this constraint, and
setting it to false deactivates it.
The process of extracting the set of assumptions that led to a conflict is
computationally easy. Let C be the clause that forces an assumption to its
opposite value. Minisat resolves C with all its predecessors in the implication
graph until a clause is generated which contains only negation of assumption
literals. The negation of this clause is a conjunction of the assumptions that
led to the conflict, also known as the relevant assumptions. The relevant
assumptions constitute a high-level core.

The assumptions technique generates larger conflict clauses owing to the
new selector variables, which may become significant if there are many assump-
tions [15, 1]. The alternative of activating and deactivating constraints with unit
clauses is more economic, as it simplifies and removes clauses. On the other hand,
the assumptions technique does not consume memory for saving the proof, nor
does it consume time to extract the core. Another difference between these two
approaches, which turns out to be very important in our context, is related to
clause minimization [2, 20], which is a technique for shrinking conflict clauses.
Whereas in resolution-based core extraction minimization of a clause may pull
into the proof additional constraints, this does not happen in the assumptions-
based approach. We will describe this issue in more detail in Sect. 4. The exper-
iments in [15] showed that the assumptions-based method is on average faster
than the resolution-based method, and produces slightly smaller cores. In the



experiments we conducted (on a larger set of benchmarks) we witnessed similar
results.

In this article we study seven improvements to the resolution-based high-
level MUC problem. With these techniques, which we implemented on top of
MiniSat-2.2 and ran over hundreds of industrial examples from Intel, we are
able to show a 55% reduction in run time comparing to the techniques in [15],
and a 28% improvement comparing to the assumptions-based technique. The
configuration that achieves these improvements also reduces the core by 73%
and 57%, respectively. More details on our experiments can be found in Sect. 4.

Since we take [15] as the starting point of our optimizations, we begin in the
next section by describing it in some detail.

2 Resolution-based high-level core minimization

The improvements we consider are relevant to resolution-based core extraction.
We implemented inside Minisat 2.2 a rather standard mechanism for maintaining
the resolution DAG. The resolution information is kept in a separate database,
which we will call here the resolution table. This table maintains the indices of the
parents and children of each derived clause. On top of this we implemented the
reference counter technique of Shacham et al. [19]. In this technique every conflict
clause has a counter, which is increased every time it resolves a new clause, and
decreased when a child clause is erased. Once the counter of a clause is 0, it
does not need to be maintained any longer for the purpose of later retrieving the
resolution DAG. In the experiments that were reported in [19], this optimization
led to a reduction by a factor of 3 to 6 in the size of the resolution table.

The unsatisfiable core is retrieved as usual by backward traversal from the
empty clause to the roots. But since we are interested in minimizing the core,
the story does not end here. We implemented the high-level core minimization
algorithm of [15], which appears in Pseudo-code in Alg. 1. The input to this
algorithm is a set of interesting constraints IC = {R1 . . . Rm}, each of which
is a set (or a conjunction, depending on the context) of clauses, and a formula
Ω, which is called the remainder. The formula Ψ =

∧m
j=1 Rj ∧ Ω is assumed to

be unsatisfiable, and the proof is available at the beginning of the algorithm.
We denote the initial core by initial core. The output of the algorithm is a
high-level minimal unsatisfiable core with respect to IC and Ω, i.e., a subset
IC ′ ⊆ IC such that Ψ ′ =

∧
Rj∈IC′ Rj ∧Ω is unsatisfiable, and no constraint can

be removed of IC ′ without making Ψ ′ satisfiable.
The algorithm is rather self-explanatory, so we will be brief in describing it.

In line 1 any constraint Ri that none of its clauses participated in the proof is
removed together with its cone, i.e., all the clauses that were derived (transi-
tively) from Ri clauses. The next line defines the set of candidate indices for
the core, which is initiated to the indices of the constraints in IC that were not
removed in the previous step. From here on the algorithm attempts to remove
elements of this set. In each iteration of the loop, it removes a constraint Rk

together with its cone and checks for satisfiability. If the formula is satisfiable,



then Rk with its cone is returned to the formula, and Rk is added to the solution
set muc. Otherwise, the unsatisfiability proof is checked in order to remove any
constraint Ri, together with its cone, that did not participate in the proof.

Algorithm 1 Resolution-based high-level MUC extraction (Based on Alg. 2
in [15])
Input: Unsatisfiable formula of the form Ψ =

∧
Rj∈IC

Rj ∧Ω.

Output: A high-level MUC with respect to IC and Ω.

1: Remove any Ri together with its cone if it is not reachable from the empty clause;
2: muc cands := {Ri | Ri ∩ initial core 6= ∅}; . MUC Candidates
3: muc := {};
4: while muc cands is non-empty do
5: Rk := a member of muc cands;
6: Check satisfiability of the formula without Rk and its cone;
7: if satisfiable then
8: return Rk and its cone to the formula;
9: muc := muc ∪ {Rk};

10: else
11: for Ri ∈ muc cands do
12: if Ri ∩ core = ∅ then . core is the unsat core of the proof
13: Remove Ri and its cone;
14: muc cands := muc cands \ {Ri};
15: return muc;

It is interesting to note that this algorithm is tailored for high-level core
minimization, and not for general core minimization. The difference is evident
by observing that the whole set of clauses associated with a constraint Ri is
removed, together with their joint core. Had the object of minimization been
the whole core, we would rather remove all clauses that did not participate in
the proof, even if other clauses that share the same constraint do participate in
the proof. For example, if Ri = {c1, c2}, and only c1 participate in the proof,
Alg. 1 retains both c1 and c2, because removing c2 does not reduce the size of
the high-level core, whereas it may assist in consecutive iterations. Furthermore,
retaining c2 is needed in order to guarantee minimality. Without it we may miss
the fact that some other constraint can be removed.

3 Optimizations

In this section we describe seven low-level optimizations to the basic algorithm
that was presented in the previous section. We will use the following terminology:
a clause is an IC-clause if it either belongs to one of the initial constraints in
IC or is a descendant of such a clause in the resolution DAG. Other clauses are



called remainder clauses. We say that a literal is IC-implied if it is implied by
an IC-clause or just implied otherwise.

A: Maintaining partial resolution proofs. In this optimization we maintain
only clauses in the cone of IC-clauses in the resolution table, and the links
between them. That is, we save an IC-clause, and the parents and children that
are also IC-clauses. Comparing to full resolution, this reduces the amount of
memory required by more than an order of magnitude in most cases, reduces
the amount of time that it takes to find clauses that are in the cone of an IC
(recall that in line 13 of Alg. 1 IC-clauses are removed together with their cones),
and, more importantly, allows to activate a certain simplification (see below) for
remainder clauses, which is normally turned off when running Alg. 1.

The simplification in point is applied in decision level 0, owing to constants.
If the clause database includes a unit clause, e.g., (x), then many solvers would
remove those clauses that contain x, and remove ¬x from all other clauses, at
decision level 0 (MiniSat is a little different in this respect: it does not remove
¬x from existing clauses once x is learned, but rather it does not add ¬x to
new learned clauses). This simple, yet powerful simplification has to be turned
off when running Alg. 1. For example, if (x) is an IC-clause associated with
constraint R1, then we cannot just remove clauses with x from the formula,
since we might decide at line 13 to remove R1, which will force us to retrieve
these clauses. Empirically it is better to retain such clauses rather than keeping
them in a file and then retrieving them. The same issue occurs when removing the
negation of x from clauses: here too, we will need to retrieve the original clauses
once R1 is removed. One of the advantages of this optimization, therefore, is
that we can turn back on this simplification for the remainder clauses.

B: Selective clause minimization. Clause minimization [2, 20] is a technique
for shrinking conflict clauses. Once a clause is learnt, each of its literals is tested:
if it implies other literals in the clause, it can be removed.

Example 1. Consider the following clauses:

C1 = (¬v1 ∨ v2) C2 = (¬v2 ∨ v3)
C3 = (¬v4 ∨ v5) C4 = (¬v5 ∨ v6)
C5 = (¬v1 ∨ ¬v3 ∨ ¬v4 ∨ ¬v6)

Suppose that the first decision is v1. This decision implies v2 (from C1) and
v3 (from C2). Suppose now that the next decision is v4. This decision implies v5

(from C3) and v6 (from C4) and a conflict in clause C5. Conflict analysis based
on 1-UIP returns in this case a new clause C = (¬v1 ∨¬v3 ∨¬v4). From C1 and
C2 we can see that v1 → v3, or equivalently ¬v3 → ¬v1, which is an implication
between literals in C. Clause minimization will find this implication by following
the resolution DAG and remove ¬v3. ut

We will not present the full algorithm for clause minimization here, but rather
only mention that it is based on traversing the resolution DAG backward from



each literal l in the learned clause. The hope is to hit a ‘frontier’ of other literals
from the same clause that by themselves imply l. If in this process we hit a
decision variable, it means that l cannot be removed.

Example 2. Continuing the previous example, the algorithm scans each non-
decision literal in C. Consider v3: this literal was implied in C2, and hence we
progress to look at the other literal in that clause, namely v2. This literal was
implied by C1 and hence we look at v1. But since v1 ∈ C, it means that we
found an implication within C, and hence ¬v3 can be removed. Note that the
minimized clause can be resolved from the original one and the clauses that are
traversed in the process. In this case Res(C, Res(C1, C2)) = (¬v1 ∨ ¬v4). ut

The problem with clause minimization in our context is that it may turn a
non-IC-clause C into a shorter IC-clause C ′. This can happen if the minimiza-
tion process uses an IC-clause: in that case C ′ has to be marked as an IC-clause
as well. Furthermore, it can turn an IC-clause C that depends on a certain set
of interesting constraints, into a shorter IC-clause that depends on more such
constraints. This means that if that clause will participate in the proof, it will
‘pull-in’ more constraints into the core.

Our suggested optimization is to cancel clause minimization in any case that
an IC-clause is involved. In other words, we prefer a large clause that depends on
a few constraints, over a smaller one with more such dependencies. The latter
may pull more constraints into the proof, and lead to other such clauses. We
aspire, instead, to keep the resolution table as small as possible and with the
fewest connections to IC-constraints. Ideally we should check whether using a
certain IC-clause in the minimization process indeed adds dependencies, but this
is simply too expensive: for this we would need to traverse the DAG backwards
all the way to the roots in order to check which constraints are involved.

It is interesting to analyze the behavior of the assumptions-based method
with respect to clause minimization. It turns out that it solves this problem for
free, and hence in this respect it is a superior method. In fact from analyzing
various cases in which it performs much better than the clause-based method
(before the optimizations suggested here were added), we realized that this is
the main cause for the difference in run-time, rather than the facts mentioned in
the introduction (the fact that it does not need to save the resolution table, nor
to extract the core in the end of each iteration). How does it solve this problem
for free? Observe that with this technique all IC-clauses have as literals all
the selector variables that correspond to constraints that were used in deriving
that clause. For example, let R1, R2 be two constraints with associated selector
variables l1, l2 respectively. If R1 and R2 participate in inferring C, then C
must contain ¬l1 and ¬l2. This is implied by the fact that selector variables
appear only in one phase in the formula, and hence cannot be resolved away.
Hence the presence of these literals in IC-clauses is an invariant. If we falsely
assume that a minimized clause C can increase its dependency on constraints,
we immediately reach a contradiction: the supposedly added constraint implies
that a new selector variable was added to C, which contradicts the fact that
literals are only removed from C in the minimization process.



C: Postponed propagation over IC-clauses. In this optimization we con-
trol the BCP order. We first run BCP over non-IC-clauses until completion. If
there is no conflict, we propagate a single implication due to an IC-clause, and
run regular BCP again. We repeat this process until no more propagations are
possible or reaching a conflict. The idea behind this optimization is to increase
the chances of learning a remainder clause rather than an IC-clause.

D: Reclassifying IC-clauses. When we discover that some IC-constraint R
must be in the MUC (line 8 in Alg. 1), we add its clauses back as remainder
clauses, together with all the clauses in its cone that do not depend on other
constraints. To identify this set of constraints, we employ an algorithm in the
style of a least-fix-point computation. We insert all the R clauses into a set S.
Then we add all the children of those clauses that all their parents are in S. We
repeat this process until reaching a fix-point.

Without this optimization R’s clauses are added back as is, with their mark-
ing as IC-clauses. By adding them back as remainder clauses, we enable more
simplifications, as described in the case of optimization A.

E: Selective learning of IC-clauses. When detecting a conflict, the learned
clause may be an IC-clause. If all else is equal, such a clause is less preferable
than a remainder clause, as it may increase the high-level core, in addition to
the fact that it leads to a larger resolution table and hence longer run times.
We found that learning a non-asserting remainder clause instead, combined with
partial restart, improves the overall performance. The learning of the remainder
clause is essential for termination, and also turns out to decrease run time. The
alternative remainder clause that we learn is even closer to the conflict than the
first UIP. We can learn it only if the conflicting clause is not an IC-clause; in
other cases we simply revert to learning the IC-clause. Learning the remainder
clause is done by reanalyzing the conflict graph as if the IC-implications were
decisions. This optimization is only ran in conjunction with optimizations B and
C above, for reasons that we will soon clarify. Alg. 2 describes the procedure for
learning this clause.

Note that the fact that we use this algorithm only when optimization C is
active, guarantees that the literals searched and updated in steps 2 and 3 are
implied by l, i.e., the fact that BCP was ran to completion on non-IC-clauses
before asserting l, guarantees that the rest of the implications at that decision
level depend on asserting l. Also note that the clause learnt in step 4 is necessarily
a remainder clause because Analyze Conflict() cannot cross an IC-implied
literal (such implications were made into decisions), and that it corresponds to a
cut in the implication graph to the right of the first UIP. The reason we activate
this optimization in conjunction with optimization B, is that we want to refrain
from a case in which we learn a remainder clause, but it then turns into an
IC-clause owing to clause minimization. This is not essential for correctness,
however: we could also have just compared this smaller IC-clause to the original
one and choose between the two, but our experience is that it is better to give



Algorithm 2 An algorithm that attempts to find a remainder conflict clause by
reanalyzing the conflict graph as if the IC-implications were decisions. Returns
a remainder clause if one can be found, and NULL otherwise.
function Get Remainder Clause
1. If the conflicting clause is an IC-clause then return NULL.
2. Search an IC-implied literal l in the trail, starting from the latest implied literal

and ending just before the 1-UIP literal.
3. Convert the implication of l into a decision, and update accordingly the decision

level of all implied literals in the trail that come after it.
4. Call Analyze Conflict() with the same conflicting clause, but while referring to

the new decision levels. Let C be the resulting conflict clause.
5. Return C.

priority to minimizing the number of IC-clauses. Finally, note that there is no
reason to revert the changes made to the trail, because backtracking removes
this part of the trail anyway.

Example 3. Figure 1 presents an implication graph, where IC-implications are
marked with dashed edges. The marked 1-UIP cut in the top drawing is calcu-
lated while considering such implications as any other implication. The suggested
heuristic is to learn instead a normal clause, by considering such implications as
new decisions, as depicted in the bottom drawing. ut

As mentioned earlier, learning the alternative clause is combined with a par-
tial restart. Let dl be the level to which we would have jumped had we learned
the IC-clause. We backtrack to dl, but at this point nothing is asserted because
we did not learn an asserting clause. We then move to the next decision level,
dl + 1, and decide the negation of the original 1-UIP literal. Hence instead of
learning an asserting clause and implying the negation of the 1-UIP literal, we
refrain from learning that clause and decide on the same value. This assignment
in neither necessary or sufficient for preventing the same conflict to occur. What
prevents us from entering an infinite loop in the absence of standard learning
is the fact that we learn at least one clause between such partial restarts. Since
the solver cannot enter a conflict state that leads to learning an existing clause,
we are guaranteed not to enter an infinite loop.

Example 4. Referring again to the conflict graphs in Example 3, our solver back-
tracks to the end of level 3 — the same level we would have jumped with the
original IC-clause — progress to level 4 and decides ¬l1. ut
In our experiments we also tried other decisions (such as ¬l2 in the example
above), but ¬l1 seems to work better in practice. We also tried different strategies
of updating the scores. The best strategy we found in our experiments is to
update the score according to both the original and the alternative clause.

F: Selective Chronological backtracking. Recall that optimization E in-
volves a partial restart when learning an IC-clause. Different heuristics can be



applied in order to choose the backtracking level. Our experiments show that
if we only backtrack one level, rather than to the original backtrack level as
explained above, the results improve significantly. The complete set of data,
available from [18], shows that this heuristic improves the run time in most in-
stances, and that it improves the search itself and not only reduces constants,
as is evident by the fact that it reduces the number of conflicts. It seems that
the reason for the success of this heuristic is related to the fact that with normal
backtracking and score scheme we may lose the connection to the clause that
we actually learn, i.e., the scores might divert the search from a space which is
more relevant to the alternative clause that we learn.
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Fig. 1. In these conflict graphs, dashed arrows denote IC-implications, and the dotted
lines denote 1-UIP cuts. In the top drawing, where such implications are referred to as
any other implications, the learned 1-UIP clause must be marked as an IC-clause, since
it is resolved from the IC-clause c. We can learn instead a normal clause by taking, for
example, the 1-UIP clause in the bottom conflict graph. In that graph, c’s implication
are considered as decisions, which changes the decision levels labeling the nodes.

G: A removal strategy. Recall that in line 5 of Alg. 1 constraints are removed
in an arbitrary order. We suggest a simple greedy heuristic instead: remove the



constraint that contributed the largest number of clauses to the proof. This
heuristic, as will be evident in the next section, reduces the size of the resulting
core but slightly increases run time.

We also experimented with a heuristic by which we remove the constraint
with the least number of clauses in the proof, speculating that this leaves more
clauses in the formula and hence increases the chance that there will be a proof
without this constraint. This option also improves performance comparing to the
arbitrary order with which we started, but is not as good as the one suggested
above. There is an indirect cause behind this difference: the large constraints (i.e.,
those that have many clauses) are typically necessary for the proof regardless of
the other constraints, and hence the faster we make them remainder constraints
– with optimization D – the faster the rest of the solution process is. This, in
turn, affects the size of the core because it leads to less time-outs. As we will
explain in the next section, the result of the algorithm when interrupted by a
time-out is the last computed core, or, in case that even the first iteration does
not terminate, the entire set of IC-clauses.

4 Experimental results

Our tool hhlmuc (for Haifa’s high-level MUC) was built, as mentioned earlier,
on top of Minisat 2.2. It contains the algorithm from Sect. 2 and also the tech-
nique of [19] for reducing the amount of required data in the resolution table
by using a reference-counter. On top of this we implemented the optimizations
that were described in the previous section, and ran all possible combinations
(excluding the restrictions mentioned in optimization E), on the set used in [15]
(family ‘lat-fmcad10’ in the tables below), and additional nine families of harder
abstraction-refinement benchmarks from Intel. We removed from the benchmark
set instances that could not be solved by any of the configurations in the given
time-out of one hour. This left us with 144 benchmarks, all of which are from the
two application domains that were described in the introduction. This set con-
stitute Intel’s contribution to the benchmarks repository that will be used in the
upcoming SAT competition dedicated to this problem. The average number of
clauses per instance is 2,572,270; the average number of constraints per instance
is 3804; and, finally, the average number of interesting clauses per instance is
96568 (25.3 clauses per constraint), which is approximately 6% of the clauses.
All experiments were ran on Intel R© Xeon R© machines with 4Ghz CPU frequency
and 32Gb of memory.

Table 4 shows run time results for selected configurations.2 The second col-
umn (“Full”) refers to our starting point as explained above. One may observe
that the best result is achieved when combining the first six optimizations,
whereas the seventh slightly increases the overall run-time.

We also compared our results to assumptions-based minimization. We tried
both a simple scheme, and the improvement suggested in [15]. In the simple
2 The full set of results, including a comparison to MUC tools (which does not appear

here) can be downloaded from [18]. The same web page includes a link to our tools.



scheme, a constraint is added to the MUC (line 8 in Alg.1) by setting its as-
sociated selector variable to true; In the improved method the same effect is
achieved by adding a unit clause asserting this literal to true. Similarly, in the
simple scheme an environment assumption is removed from the formula (line 13
in Alg.1) by setting its associated selector to false; In the improved method the
same effect is achieved by adding a unit clause asserting this literal to false.
The improved method is better empirically apparently because the unit clause
invokes a simplification step in decision level 0, which removes the selector vari-
able and erases some clauses. The results we witnessed with the two methods
appear in the last two columns of the table. Overall the combination of optimiza-
tions achieve a reduction of 55% in run time comparing to our starting point,
and a reduction of 28% comparing to the assumptions-based method.

All the presented methods can be affected by the order in which constraints
are removed in line 5. We therefore tried three different arbitrary removal orders
in each case. Empirically this hardly had an effect on the average run-time when
using the resolution-based methods, whereas it had some effect when using the
assumption-based methods. The table below represents the best overall run times
among the different orders we tried (i.e., we present the results that together have
the minimum run-time). Regarding the size of the resulting core, the different
arbitrary orders had inconsistent effect, as expected, but the order referred to
in optimization G had a non-negligible positive effect on the size of the core, as
will be shown momentarily.

Benchmark Resolution-based Assumptions-based
family Full A AB ABC ABCE A–E A–F A–G units

latch1 2001 1604 660 465 570 575 425 423 819 798
gate1 3747 1403 705 636 620 579 490 477 856 855
latch2 9113 5915 6636 6116 5685 5656 2424 2370 8153 8043
latch3 348 293 274 274 283 275 262 200 236 236
latch4 769 529 506 457 467 455 443 379 504 521
latch5 1103 820 735 657 678 630 632 625 747 689
lat-fmcad10 785 457 445 451 435 435 400 394 417 425
latch6 8868 5456 5329 5188 5007 5006 4948 4943 5322 5279
latch7 9956 7050 5719 5244 5094 5096 5302 5286 5688 5652
latch8 8223 7946 5673 6133 5459 5420 5127 5587 8004 5534

Total 44913 31473 26682 25621 24298 24127 20453 20684 30746 28032

Table 1. Summary of run-time results by family (144 instances all together).

Next, we consider the size of the resulting high-level MUC. The configuration
that achieves the best run-time (A–F) achieves the second smallest high-level
core, whereas the second best configuration in terms of run time (A–G) achieves
the smallest core. If a solver timed-out in our experiments, we considered its
latest computed core, i.e., the set muc ∪ muc cands. If a solver did not finish
even the first iteration, then we considered the entire set of clauses in IC as its



achieved core. This policy, which reflects the way such cores are used, explains
the different results of strategies that are supposed to be equivalent with respect
to the size of the core. For example, the partial-resolution proof optimization
(A) does not remove more clauses than ‘Full’, but since the latter is generally
slower, it times-out more times and hence its core count is larger. The ‘TO’ row
contains the number of such time-outs with each configuration.

Benchmark Resolution-based Assumptions-based
family Full A AB ABC ABCE A–E A-F A-G units

latch1 41 41 41 41 42 42 41 42 52 45
gate1 1143 1210 1089 568 1029 1029 870 901 618 1192
latch2 5887 2851 127 3040 2851 2851 131 129 3782 4165
latch3 168 202 202 199 211 211 208 123 140 132
latch4 236 237 248 236 238 238 237 162 177 217
latch5 224 266 266 206 206 206 220 222 222 223
lat-fmcad10 577 456 456 489 540 540 453 454 457 450
latch6 2550 2502 2502 2490 2490 2490 2480 2480 2463 2502
latch7 2578 322 585 253 154 154 211 204 304 287
latch8 5591 615 2867 393 344 344 371 373 2887 2877

TO 8 5 3 3 2 2 2 2 6 5

Total 18995 8702 8383 7915 8105 8105 5222 5090 11102 12090

Table 2. Summary of the size of the high-level core by family. The ‘TO’ row indicates
the number of time-outs.

5 Summary and future work

The recently introduced problem of finding a high-level minimal unsatisfiable
core has various applications in the industry. Until [15] the standard practice
was to minimize the core itself, and only then to find the interesting part of
it. Our experiments show that this approach cannot compete with a solver that
focuses on the high-level core. In this article we introduced seven techniques that
reduce both the run time and the resulting high-level core.

A straight-forward direction for future research is to migrate some of the
suggested optimizations to the assumptions-based approach. Related SAT prob-
lems may also benefit from these methods. First - it is possible that general SAT
solving can be improved with some combination of optimizations E and F. Sec-
ond, the same techniques can potentially expedite other methods in which the
SAT component needs to extract only partial information from the resolution
proof, like interpolation-based model checking [13]. In interpolation only a small
part of the proof is necessary in order to generate the interpolant, and we want
to explore possibilities to minimize that part and decrease the overall run time
with variants of the methods suggested here.
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1. R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell. Efficient gen-
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