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Abstract. In several fields, Satisfiability being one, there are regular
competitions to compare multiple solvers in a common setting. Due to
the fact some benchmarks of interest are too difficult for all solvers to
complete within available time, time-outs occur and must be considered.
Through some strange evolution, time-outs became the only factor that
was considered in evaluation. Previous work in SAT 2010 observed that
this evaluation method is unreliable and lacks a way to attach statistical
significance to its conclusions. However, the proposed alternative was
quite complicated and is unlikely to see general use.

This paper describes a simpler system, called careful ranking, that per-
mits a measure of statistical significance, and still meets many of the
practical requirements of an evaluation system. It incorporates one of
the main ideas of the previous work: that outcomes had to be freed of
assumptions about timing distributions, so that non-parametric methods
were necessary. Unlike the previous work, it incorporates ties.

The careful ranking system has several important non-mathematical prop-
erties that are desired in an evaluation system: (1) the relative ranking of
two solvers cannot be influenced by a third solver; (2) after the competi-
tion results are published, a researcher can run a new solver on the same
benchmarks and determine where the new solver would have ranked;
(3) small timing differences can be ignored; (4) the computations should
be easy to understand and reproduce. Voting systems proposed in the
literature lack some or all of these properties.

A property of careful ranking is that the pairwise ranking might contain
cycles. Whether this is a bug or a feature is a matter of opinion. Whether
it occurs among leaders in practice is a matter of experience.

The system is implemented and has been applied to the SAT 2009 Com-
petition. No cycles occurred among the leaders, but there was a cycle
among some low-ranking solvers. To measure robustness, the new and
current systems were computed with a range of simulated time-outs, to
see how often the top rankings changed. That is, times above the sim-
ulated time-out are reclassified as time-outs and the rankings are com-
puted with this data. Careful ranking exhibited many fewer changes.

1 Introduction and Overview

Empirical comparison of computational performance is an important technique
for advancing the state of the art in software. In Propositional Satisfiability



and several related fields testing programs on benchmarks is complicated by
the fact that time limits must be set, because some benchmarks of interest are
too difficult for all programs to complete within available time. Programs can
fail to complete a test due to exhausting time or some other resource, often
memory. There is no clearly correct way to integrate the results of failed tests
and completed tests, to compute a single “figure of merit.”

To focus the discussion, let us assume that the property we wish to measure
is speed of solution, and we are evaluating the results of a SAT competition.
If every program could complete every test, we would simply add up the times
for each program and rank them according to this total, with smallest being
best. From this point of view, time-outs and other failures are defects in the
experiment.

In actuality, there is not time for every program to complete every test, and
failures do occur. This leads to what is called censored data in the literature: there
“really” is a value for the time the program would have taken on a benchmark,
we just did not find out what that value is. The question is, what is a good way
to rank the programs, based on the data that is available. Logically, we would
want this ranking method to produce the same results as the ideal experiment,
to the extent possible.

The ranking method that has been used in recent SAT competitions, which
we shall call solution-count ranking,' is to set some time limit ad hoc, and
simply count how many tests are successfully completed. Through some strange
evolution, time-outs, which are the manifestations of defects in the experiment,
became the only factor that was considered in evaluation. Total CPU time is
used as a tie-breaker only if solution counts are equal.

Previous work by Nikoli¢ observed that solution-count ranking is unreli-
able and lacks a way to attach statistical significance to its conclusions [Nik10].
However, the proposed alternative was quite complicated and had some practi-
cal drawbacks. The purpose of this paper is to describe and propose a simpler
system that meets the practical requirements for ranking solvers in a SAT com-
petition (endorsed by a survey of solver developers and users),! and also gives
information about the statistical significance of the results, or lack thereof.

Definition 1 Practical requirements:

1. The relative ranking of two solvers cannot be influenced by a third solver.

2. After the competition results are published, a researcher can run a new solver
on the same benchmarks and determine where the new solver would have
ranked.

3. Small timing differences can be ignored.

4. The computations should be easy to understand and reproduce.

One earlier method, called the purse method,? lacked properties (1) and (2) and
fell into disfavor after a few trials. []

! Seehttp://www.satcompetition.org/2009/spec2009.html, where it is called “Lex-
icographical NBSOLVED, sum ti.”
% See http://www.satcompetition.org/2007/rules07 .html.



The methodology we propose, called careful ranking, incorporates one of
the main ideas of Nikoli¢: that outcomes must be free of assumptions about
timing distributions, because we have no information about these distributions.
Non-parametric methods are necessary. Unlike the previous work, our proposal
incorporates ties to account for timing differences that are considered inconse-
quential for ranking purposes.

The careful ranking system has the important non-mathematical proper-
ties given in Definition 1. The main ingredient of careful ranking is that all
pairs of competitors are compared in isolation, leading to a pair of “scores” that
sum to zero. A large positive score indicates a significantly faster solver. The null
hypothesis is that both solvers are equally fast “overall,” or “in the long run.”
The expected value of the score is zero, under this hypothesis. The difference
between zero and the observed score may be converted into a standard measure
of statistical significance.

For a k-way competition, there are k(k — 1)/2 pairwise matches. The results
are expressed with a dominance matrix, as described in Section 5. The final
ranking is extracted from this matrix.

There is a meta-ranking question to be addressed. How can we compare
various ranking methods, since we do not know the “true answers?” The method
we propose, and use, is to measure sensitivity to changes in the time limit. We
do not know what would have happened if we used a larger time limit. But what
would have happened under all shorter time limits can be determined from the
available data.

The careful ranking system is implemented® and has been applied to the
SAT 2009 Competition. The implementation is csh scripts, sed, and awk, which
should be portable. No cycles occurred among the leaders, but there was a cycle
among some low-ranking solvers. To measure robustness, the new and current
systems were computed with a range of simulated time-outs, to see how often the
top rankings changed. That is, times above the simulated time-out are reclassified
as time-outs and the rankings are computed with this data.

2 Related Work

There is a large body of work on various aspects of experimental comparisons.
We restrict ourselves to immediately related work on ranking solvers. Non-
mathematical considerations for a scoring method are discussed in general terms
by Le Berre and Simon [LBS04], and influenced several aspects of the method
proposed here. One such aspect is our provision for many timing differences to
be treated as a tie, because it appears that many people consider calling one
solver the winner in these cases is a distortion. The reaction to this perceived
distortion has been to reduce the importance of speed to nearly nothing, as long
as the solver stays within the time limit. We hope that treating “minor” timing
differences as ties will make the technique more acceptable than prior techniques
that used time as the major consideration.

3 Code is at http://www.cse.ucsc.edu/~avg/CarefulRanking/.



Brglez and co-authors [BLS05,BO07] replicate instances into classes to gather
statistics. Their goals are quite different from ranking a competition. Nikoli¢
[Nik10] extends these ideas to compare more than two programs. The non-
mathematical, practical issues mentioned in Definition 1 are not considered in
these papers.

Pulina conducted an extensive empirical evaluation of several scoring meth-
ods [Pul06]. One criterion he used is similar to the one we use, decreasing the
time limit and measuring stability. Our proposed method is significantly differ-
ent from those he analyzed. Most or all of the comparison methods he studied
lacked the independence from a third solver. Thus a later researcher could not
see where new work fit into a previous competition.

Pulina introduced the idea of viewing the ranking problem as a voting situa-
tion: each benchmark “votes” for the solvers (the “candidates”) by a preference
ballot that ranks them by solution time. This is a very attractive idea, but un-
fortunately, none of the well-known proposed voting methods satisfy the criteria
of Definition 1 and elaborated further in the URL given there. There is a vast
literature on this subject, as surveyed by Levin and Nalebuff [LN95], and more
recently treated by Pomerol and Barba-Romero [PBR00] and Tideman [Tid06].

A detailed comparison with all proposals would take us far afield, so we
restrict attention to the Schulze method, which has enjoyed recent popularity
[Sch03]. That popularity is not surprising, because the Schulze method, unlike
many other proposals (such as Borda), permits voters to vote equal preferences
among subsets of the candidates (e.g., D=1, (4,C)=2, B=T is a valid ballot in
a field of 10).

Suppose a competition is being run with six solvers and 63 benchmarks with
Schulze ranking (the example may use many combinations of numbers), and the
following events transpire. After 60 benchmarks have been run on all solvers,
the Schulze ranking is computed and solver A is uniquely winning. On each of
the last three benchmarks, solver A has the best performance of any solver and
solver D has the worst performance of any solver. (For example, solver D might
time out on the last three benchmarks). However, when the Schulze ranking is
computed using all 63 benchmarks, D wins. No, this is not a typo. See Appendix
B of [Sch03] for complete details.*

It is impossible to imagine that any organizers of a competition would adopt
the Schulze method, if they know about this possibility. Moreover, this is not a
quirk in the Schulze method. It is known to be present in a large class of methods
that satisfy the Condorcet principle [LN95,Tid06]. The phenomenon is known
as the no-show paradoz [Mou88], because solver A would have been better off
without the “support” of the last three benchmarks, on all of which A was the
clear winner.

The above example is possible under Schulze ranking and many other voting
systems because it does not satisfy criterion (1) in Definition 1, that other solvers
should not be able to affect the relative ranking of solvers A and D.

4 The example cited has some pairwise ties among candidates, for simplicity of presen-
tation, but these ties can be removed by “fuzzing” without changing the outcomes.



3 What is a Tie?

Say we are comparing solvers (R, .S) on a set of benchmarks, {B; |i=1, ..., n},
with time limit 7. The data is two lists of numbers, ¢;(R) and ¢;(.5), the solution
times of the two solvers on B;. Numbers are floating point and include Inf to
denote a failure of any kind. (We choose not to distinguish among failure reasons,
except that a wrong answer means the solver is disqualified and its matches are
not scored.) All data other than Inf is between 0 and 7, and we call these finite
times.

We interpret the lists ¢;(R) and ¢;(S) as a series of n mini-matches, each with
a stake of one point. A tie awards 0 to each solver. A win for R gives R a score
of 1 and gives S a score of —1, and the reverse if S wins.

Clearly if t;(R) = t;(S), the result is a tie. The question is what other out-
comes should be considered a tie. The current method treats any pair of finite
times as a tie; the only win is a finite time vs. Inf. The opposite extreme is that
any t;(R) < t;(S) is a win for R. Nikoli¢ performed a theoretical analysis that
depended on a complete absence of ties, so he “discarded” benchmarks where
all times were under 5 seconds, which got rid of all the exact equalities with
finite times, and then treated any finite time difference as a win [Nik10]. This is
essentially the same as saying any pair of times under 5 seconds is a tie.

Our thesis is that some time differences should be considered “inconsequen-
tial” in the sense that someone trying to select the better solver between R and
S for use in an application would not be influenced these time differences. We
hypothesize that on longer runs, larger time differences would be considered in-
consequential, so we want to define a tie zone whose width grows as run times
get longer. We also believe that most people agree that below some threshold, all
time differences are inconsequential. The user decides where to set this thresh-
old, which we call noise, and which is the only user-specified parameter needed
to specify the tie zone.

The growth rate we choose is founded in recurrent-event theory. We model the
solver’s computation as a long series of search events with independent outcomes.
The probability that a search event has a successful outcome is very small,
and the solver terminates upon the first successful search event. This is the
well-known Poisson process. The standard deviation of the time to termination
is proportional to the square root of the average time to termination. If two
solvers have the same (theoretical) average time to termination on benchmark
B;, then their time difference is a random variable with mean zero and standard
deviation proportional to the square root of their common average. We propose
that observed time differences less than some number of standard deviations
should be considered as ties, because they do not provide compelling evidence
that one solver’s average is really shorter than the other’s. This is purely an
heuristic model, of course.

Once we accept the idea that it is sensible for the tie zone to grow proportion-
ally to v/(t;(R) +t;(S))/2, the square root of the average of the two observed
solving times, all that remains is to choose a constant of proportionality. The
user makes this choice indirectly by specifying a scalar parameter called noise.
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Fig. 1. Tie Zone for noise = 1 minute; times in minutes. Lower curve: faster solver
time; upper curve: slower solver time; middle line: average of upper and lower curves.

As stated above, the intuition is that all solution times at or below the noise

level should be treated as indistinguishable. Figure 1 shows the tie zone for noise

= one minute. Any pair of times, both under one minute, fall into the tie zone.
To generate the desired tie zone, we define:

a = y/noise /2

A=a+/(t:(R)+t:(S))/2.

Then the “tie zone” extends from (¢;(R)+t;(5))/2 — A to (t;(R)+1:(5))/2 + A.
For R to win it is necessary that

ti(R) < (t:i(R) +1:(5))/2 — A

Since t;(R) > 0, S is assured of (at least) a tie whenever ¢;(S) < noise, as was
desired by the user.

4 Pairwise Matches

Say we are comparing solvers (R, .S) on a set of benchmarks, {B; |i=1, ..., n},
with time limit 7. The data is two lists of numbers, ¢;(R) and ¢;(.5). As described
in Section 3, we interpret the lists ¢;(R) and ¢;(.S) as a series of n mini-matches,
with each outcome for R being —1, 0, or 1. The (algebraic) total is the raw
score for the match, denoted raw(R,S). For simplicity, all pairs are processed,
so S is compared with R at some point to get raw(S, R), which of course equals
—raw(R, S).



The value of raw(R,S) can be used to test the null hypothesis, which is
that R and S have an equal probability of winning a random mini-match. We
also need the number of decisive (non-tie) mini-matches, denoted decisive(R, S).
Then the Student ¢ parameter is given by

raw(R, S)
\/decisive(R, S)’

which expresses the raw score in standard deviations. Statistically, the match is
modeled as decisive(R, S) fair coin flips. If decisive(R, S) is large, the distribution
is close to Gaussian. We are certainly justified in rejecting the null hypothesis
when [t| > 2, without figuring out the exact value of p, which is the probability
of observing a t-value this large or larger. In this case p < 0.03.

To summarize, if Student ¢ > 2 in (1), we may conclude that R is faster
than S with high confidence, on a space of benchmarks for which the actual
benchmarks used are representative. If Student ¢ = 1 we may have “medium”
confidence, because a value this large or larger would occur with probability
about 0.16 if the solvers were really equally fast on average.

Student ¢ =

(1)

5 Competition Ranking

We propose to create a k-way competition ranking of solvers Sy, ..., Si by
forming a k X k matrix M in which

1 if raw(S;, ;) >0
M,;;=4¢05 if raw(S;, S;) =0 (2)
0 if raw(S;,S;) <0

This matrix can be interpreted as specifying a directed graph (also called M),
where solvers are vertices and an edge from S; to S; exists wherever M; ; # 0. If
M; ; = M;; = 0.5, there are edges in both directions. If this graph is acyclic, it
defines a total order among the solvers, which we call the dominance order. In
practice, we usually are not concerned about establishing a total order among all
participants; it is sufficient if there is a total order among the leaders, perhaps
the 5-6 top ranks.

First, let us focus on the case that the leaders do not have any tied matches,
not even with a non-leader. Things are slightly more complicated otherwise. In
the case of no leader ties, adding up the rows of the leaders provides a “definitive”
ranking. That is, if M restricted to the leaders defines an acyclic graph, each
row sum is unique, and ranking the leaders by row sums is unambiguous.

However, it is possible, even in the case of no leader ties, that the graph
has a cycle [Nik10]. This possibility is present because ties are not transitive in
mini-matches. In other words, on a specific benchmark Bj;, it is possible that
S1 ties with So and Ss ties with S3, but S; wins or loses against S3. We can
easily create a set of timings on three benchmarks so that raw(Si,S2) = 1,
raw(Ss, S3) = 1, and raw(S3, S1) = 1. Longer and more complex cyclic structures



can be constructed, as well. If a cyclic structure is present, then at least two row
sums must be equal (still in the case of no leader ties in matches).

The conclusion from the preceding discussion is that row sums can provide
quick hints, are easily interpreted, but may be inconclusive. If used carelessly
in the presence of ties, they can be misleading. On the positive side, we expect
them to be adequate for most situations. But “most” is not good enough, so we
need a procedure that always gives an unambiguous result.

Example 2 This small example shows some complications that can arise, in-
volving pairwise ties and cycles. Let us assume that the time-out is 15 and that
a difference of 3 is a winning margin in the range of times shown below, while a
difference of 2 is a tie. The left side shows times for three solvers on three bench-
marks. The middle shows the raw scores. The right side shows the dominance
matrix.

|51 S2 Ss | S1 S5 S |51 55 S
B 101314 5] 0 10 5] 0 105
Bi[141210  S/-1 01 S 00 1
Bs|121114 S5 0—1 0 8505 0 0

Although S; beats Sy and Sy beats Ss, still S3 ties S1, so all three are cyclically
related. However, no row-sums are equal. []

Treating M simply as a connected, directed graph, its vertices (the solvers)
can be partitioned into strongly connected components. (For small graphs, the fa-
mous linear-time procedure is unnecessary; matrix multiplications and additions
suffice.) The component graph, obtained by collapsing every strongly connected
component to a single node, defines a total order.

‘We propose that all solvers living in the same strongly connected compo-
nent (SCC) of the graph M described in (2) shall be equally ranked; otherwise
the relative ranking is determined by the component graph. This policy provides
an unambiguous specification for all situations.

If a tie-break is necessary (e.g., an indivisible trophy is awarded), we recom-
mend that all solvers in a single SCC shall be ranked among themselves by the
sums of their raw scores within the SCC. That is, if S, ..., Sy comprise an SCC,
then

TieBreak(S;) = z raw(S;, S;)

Jj=1

This amounts to treating each mini-match among S1, ..., Si as a single-point
contest between two solvers in a round-robin event similar to teams in a league
playing a season, so we call this the round-robin tie-break method. It is also
known as Copeland’s method in the voting-system literature [PBR00]. The ad-
vantage of this method is that it is easily understood and familiar. Its disad-
vantage is that the comparative ranking of S; and S; depends on mini-matches
involving other solvers in the SCC.



Table 1. The dominance matrix for 16 solvers in the final phase, based on careful
ranking.

1 2345 6 78 9 10 11 12 13 14 15 16

1 CircUs ooooo0o0011 1 1 1 0 0 1 O
2 LySAT.i 101110111 1 1 1 0 1 1 O
3 MXC TP 00000111 1 1 1 0 1 1 O
4 ManySAT 11 1 01 0O0O1 11 1 1 1 0 1 1 O
5 MiniSAT_09z TP 01100111 1 1 1 0 1 1 O
6 MiniSat_2.1 111110111 1 1 1 0 1 1 O
7 Rsat 10000O0OO0O11 1 1 1 0 1 1 0O
8 SATO07_Rsat 0oo0oo0o0o00O0OO0OTI1 O 1 1 0 0 0 o0
9 SATO7_picosat 0 0 0 0O 0O O OOO O O O O O 0 O
10 SATzilla 0ooooo0o0011 0 1 1 0 0 1 o0
11 SApperloT 0000O0OOOOT1T O O O O 0o o0 o
12 clasp 0000O0OOOO1T O 1 O O 0 0 o0
13 glucose 111111111 1 1 1 0 1 1 O
14 kw TP 0000O0OO0O11 1T 1 1T 0 0 0 O
15 minisat.cuomr O 0 O 0 0O O 01 1 0 1 1 O 1 0 O
16 precosat 111111111 1 1 1 1 1 1 O

In practice, we expect SCCs to be about 24 solvers. Outcomes perceived
as being “unfair” seem unlikely, because all the solvers involved are peers. In
Example 2, the round-robin tie-break makes S7 > Ss > S3. Notice that tweaking
the times by 0.1 does not change the result, using this method. However, with
the solution-count method, S; and Sy are tied with the times as shown, but
tweaking can make either one the winner.

6 Results on the SAT 2009 Competition

The final round of the Application section in the SAT 2009 Competition® was
conducted with a time limit of 10000 seconds, used 292 benchmarks, and in-
volved 16 solvers. The organizers were Daniel Le Berre, Laurent Simon, and
Olivier Roussel. The discussion uses abbreviated solver names; please see the
web page for complete names. The solvers were ranked for the competition us-
ing the solution-count ranking method described in Section 1. We computed
the rankings that would have resulted using careful ranking. The dominance
matrix discussed in Section 5 is shown in Table 1.

Examination of this matrix shows that solvers 1, 10, 14, and 15 are in one
strongly connected component, so they share ranks 9-12, according to Section 5.
All other solvers are not in any cycles, so have unique ranks.

® See http://www.satcompetition.org/2009/.



Table 2. Numbers of changes in top three ranks for two ranking methods and various
time limits (seconds).

time range solution-count careful rank

1600-2000 8 4
2000-4000 10 0
4000-6000 4 0
6000-8000 0 0
8000-10000 1 0

6.1 Robustness of Ranking

We analyzed the robustness of the ranking methods by counting how many
times there was some change in the top three ranks as the time limit was varied
continuously. We note that precosat stayed in first place for all time limits 4000
seconds and above, in both ranking methods. Table 2 summarizes the numbers
of changes in various ranges. (Returning to an earlier permutation is considered
a change, too.) It seems clear that careful ranking is more robust by this
criterion.

We offer this intuitive explanation for why careful ranking gives less vari-
ations as the time limit changes. With solution-count ranking, a mini-match
victory is only temporary, as the time limit increases: S7; wins the mini-match
against Sy only if S7 succeeds and S; times out. But for a high enough time
limit S5 also succeeds (in theory), and the victory is wiped out. However, with
careful ranking, once the time limit is sufficiently above the solving time of S;
and Sy still has not succeeded, the victory is permanent for this mini-match.

6.2 Differences in Ranking

The two ranking methods, careful ranking and solution-count ranking,
disagreed on the third place solver with the final time limit of 10,000 seconds.
MiniSat_2.1 held third place behind glucose for all time limits above 2000
under careful ranking.

Under the solution-count ranking, MiniSat_2.1 and LySAT_i exchanged
places two and three several times, with LySAT_i finally taking the lead after
about 8100. By the 10,000 mark MiniSat_2.1 was in sixth place.

Under the solution-count ranking, precosat and glucose were appar-
ently “neck and neck,” as they each solved 204 instances. The tie-break was on
cumulative CPU time, and precosat won. Other solvers were in the 190’s well
separated from the two leaders.

Quite a different picture emerges under careful ranking. We show three
matches with their statistics. “Std. Devs.” refers to the Student ¢ from (1).



Winner Loser Raw Score Std. Devs. Prob. Faster

precosat glucose 16 1.65 0.97
glucose MiniSat_2.1 8 0.83 0.79
MiniSat 2.1 LySAT.i 8 0.86 0.80

In this ranking, precosat has a more convincing win than any of the others.

6.3 Tie-Break Illustration

Recall that Table 1 shows that solvers 1, 10, 14, and 15 are in one strongly
connected component, sharing ranks 9-12, For purposes of illustration, we apply
the round-robin tie-break procedure described in Section 5 to these four solvers,
although in practice it is probably not important to break this tie.

The left side just below shows the raw scores for solvers involved. The right
side shows the dominance subgraph.

| 51 S0 S1a S1s S1 Sio
S 0 13 -9 1
Si0|—13 0 -8 3
Sis

Sl 9 8 0 -1
515 -1 -3 1 0 514

The round-robin ranking, based on the row-sums, gives S14 > S19 > S15 > S7.

7 Conclusion

This paper described a new ranking system that provides a measure of statis-
tical significance, allows for small timing differences to be treated as ties, and
ensures that a pairwise comparison between two solvers is not influenced by a
third solver. The latter property also allows later researchers to replicate the
competition conditions and find out where their solver would have ranked. An-
other application of this technique is to evaluate whether software changes from
one version to another caused a performance difference that is statistically sig-
nificant, or whether the difference is in a range that might well just be random.
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