Generalized Conflict-Clause Strengthening
for Satisfiability Solvers

Allen Van Gelder
http://www.cse.ucsc.edu/~avg

University of California, Santa Cruz, CA 95064

Abstract. The dominant propositional satisfiability solvers of the past
decade use a technique often called conflict-driven clause learning (CDCL),
although nomenclature varies. The first half of the decade concentrated
on deriving the best clause from the conflict graph that the technique
constructs, also with much emphasis on speed. In the second half of the
decade efforts have emerged to exploit other information that is derived
by the technique as a by-product of generating the conflict graph and
learning a conflict clause. The main thrust has been to strengthen the
conflict clause by eliminating some of its literals, a process often called
conflict-clause minimization, but more accurately described as conflict-
clause width reduction, or strengthening.

This paper first introduces implication sequences as a general framework
to represent all the information derived by the CDCL technique, some of
which is not represented in the conflict graph. Then the paper analyzes
the structure of this information. The first main result is that any conflict
clause that is a logical consequence of an implication sequence may be
derived by a particularly simple form of resolution, known as linear input
regular. A key observation needed for this result is that the set of clauses
in any implication sequence is Horn-renamable. The second main result
is that, given an implication sequence, and a clause C derived (learned)
from it, it is NP-hard to find a minimum-cardinality subset of C that
is also derivable. This is in sharp contrast to the known fact that such
a minimum subset can be found quickly if the derivation is restricted to
using only clauses in the conflict graph.

1 Introduction

More and more, propositional satisfiability solvers (SAT solvers, for short) are
making their way into other applications as tools. The leading methodology,
often called conflict-driven clause learning (CDCL), is well established, yet con-
tinues to evolve. The underlying idea is to derive conflict clauses as a by-product
of failed search lines; these clauses are added to the set of clauses representing
the formula to be solved. Recall that in SAT testing a formula is a conjunctively
joined set of clauses, each of which is a set of disjunctively joined literals, abbre-
viated as CNF format. The number of literals in a clause is its width. The field
has become extremely technical, but we shall try to present the main ideas of
our new findings informally, to be accessible to non-specialists.

One active line of research is how to “strengthen”, or reduce the width of),
such conflict clauses. We put “strengthen” in quotes because one finds several
different terms in the literature, including “improve,” “subsume,” “reduce,” and
“minimize.” In most cases, what is meant is to find another soundly derived
clause whose literals comprise a proper subset of the literals in the conflict clause
(sometimes the reference clause to be reduced is an original clause). The clause
is a constraint that can be satisfied by making any one of its literals true, so re-
ducing the number of literals creates a stronger constraint. For the strengthening
to be logically sound, no solutions to the overall formula may be eliminated. The
stronger constraint simply replaces the original conflict clause. Han and Somenzi
provide a good review of this emerging subfield [9].

In recent papers two rather surprising observations have emerged concerning
solution of typical industrial instances, with thousands of variables and over a
million clauses, in some cases: (1) conflict clauses can be reduced 32% in width,
on average, permitting a substantial savings in memory [2]; (2) these reductions
can be discovered and applied to achieve substantial net savings in time, as well
[16,17]. the method sketched in a poster by Sérensson and Eén, The reduction
method has come to be known as recursive conflict-clause minimization. It uses
only the same clauses as were used to derive the conflict clause.

The subject of this paper, and some other recent papers, is how to bring ad-
ditional clauses from the formula into the strengthening process, clauses which
were not used in the derivation of the conflict clause. We call this generalized
conflict-clause strengthening. Audemard et al. describe one method, which they
call inverse arcs, to use other clauses beneficially. In their method, the newly
derived conflict clause is not necessarily a subset of the original, but it removes
certain literals from the original to enable a longer back-jump during the back-
track, which ensues immediately after the conflict clause is recorded [1]. Han and
Somenzi go somewhat in the other direction, by using (possibly intermediate)
clauses derived during conflict analysis to strengthen clauses that existed before
the analysis began [9].

One motivation for considering subsets of the originally derived conflict clause
(rather than including new literals, as in [1]) is that this clause is known to have
a property called 1-empowering [15]. Derivable subsets of a 1-empowering clause
are also l-empowering.

Implication sequences are introduced in Section 2 as a new formalization of
part of the operation of CDCL SAT solvers. Implication sequences are supersets
of the previous formalization, which we call antecedent sequences in this paper.
The additional clauses that are included are called wvolunteers. Section 3 shows
that implication sequences are Horn Renamable, after reviewing Horn clauses
and Horn renamability.

The main technical results are given in Section 4. There it is shown that
every clause that is a logical consequence of an implication sequence has a certain
simple and short form of resolution derivation. Then it is shown that finding a
minimum-cardinality conflict clause that satisfies additional natural conditions
is NP-hard.

1.1 Terminology and Notation

Let V be a set of propositional variables. Propositional variables may take on
the truth values true (or 1) and false (or 0). A literal is either v or its negation,
v, where v is a variable in V or v = 1, which denotes false, but is treated as
a positive literal to make the notation more uniform. Instead of L we write T,
for readability. We consider @ to be synonymous with v. (To distinguish propo-
sitional variables from literals, usually letters near the middle of the alphabet
(p, q, 7, etc.) denote literals, and letters near the end of the alphabet denote
propositional variables.)

A clause is a disjunctively connected set of literals, and is non-tautological
unless specified otherwise. The literals comprising a clause may be shown be-
tween square brackets. The width of a clause is the number of literals in it. A
CNF formula (formula for short) is a conjunctively connected set of clauses.

An assignment is a partial function from variables to truth values. It is often
represented by a set of literals that are assigned true by the assignment. A total
assignment assigns values to all variables. An assignment A is said to satisfy a
literal p if A assigns true to p, and it is said to falsify p if it assigns true to p.
The terminology extends to logical expressions in the natural way. A formula is
said to satisfiable if it is satisfied by some assignment; otherwise the formula is
unsatisfiable.

Resolution is denoted as follows. For two clauses, C1 = [r,p1,...,pr] and
Co=[T,qu,...,q;], r is called the clashing literal and resolution on r yields the
resolvent: res,(C1, C2) = [p1,. .., Pk, @1, - - -, q;], which must not be tautological,
unless stated otherwise. A resolution proof is a sequence of resolutions whose
operand clauses are in the formula under consideration or derived earlier in the
proof. A resolution refutation (refutation for short) is a resolution proof that
derives an empty clause.

Unit-clause propagation consists of doing all possible resolutions in which
at least one operand is a unit clause. The effect is to reduce the width of the
second operand by one, which may result in a new unit clause, whose effects
are similarly propagated. If the second operand is also a unit clause, the empty
clause is derived.

In the course of unit-clause propagation, the first clause that shrinks to width
one or zero is called the antecedent of the associated unit literal in many papers.
(Some papers use the term “reason” instead of “antecedent”.)

2 Implication Sequences

Although CDCL solvers have many technical details, the part we are concerned
with can be described in terms of implication sequences, which are composed
of propagation sequences. We define propagation sequences and implication se-
quences abstractly, but the action of a CDCL solver actually creates such se-
quences.

Definition 2.1 An assumption clause is a special clause that serves only a
notation purpose, of the form [g, T]. This records that literal ¢ is assumed to be
true, and is assigned true at this point in whatever sequence contains the clause.
For uniformity, ¢ is called the satisfied literal of such a clause. In addition, [T
is a placeholder assumption clause that assumes nothing.

A unit clause is a clause in which all literals except one have been assigned
false (falsified). The remaining literal is called the implied literal, as well as the
satisfied literal of this clause. The complements of the falsified literals in the
clause are called reason literals for this clause.

A falsified clause is a clause in which all literals have been assigned false.
However, for uniformity, we add L as an extra literal, and call it the implied
literal and satisfied literal, so that a falsified clause can be processed as though
it were a unit clause. []

Definition 2.2 A propagation sequence is a sequence of clauses C;, i =1, ...,
m, that begins with an assumption clause and continues with zero or more
standard clauses that have become unit clauses or falsified clauses. The unit-
clause propagation begins with the assumption, as well as variable assignments
that were made prior to the propagation sequence, as its unit clauses. The clauses
C;, for i > 1, appear in the propagation sequence in the order they were found to
be unit or falsified. To some extent, this order is solver dependent. A propagation
sequence ends when no further unit clauses or falsified clauses can be derived by
unit-clause propagation.

The sequence may not be unique, but once C is chosen, the set of clauses in
the propagation sequence is unique. If no falsified clause is derived, then the final
assignment, as a set of literals, is unique. Assignments made in one propagation
sequence carry over into subsequent propagation sequences that are part of the
same implication sequence, which is defined next. []

Definition 2.3 An implication sequence is a sequence of one or more propa-
gation sequences in which the last propagation sequence contains at least one
falsified clause, and no earlier propagation sequence contains a falsified clause.
Each propagation sequence is usually called a level (or decision level) in the
implication sequence, with level numbers beginning at one for the first assump-
tion (and zero before any assumption). An implication sequence may also be
viewed as the concatenation of its propagation sequences; which view is taken
should be clear from the context. Within an implication sequence, clauses (other
than assumption clauses) are named as follows: (1) The clause that is earliest
in the implication sequence among those that contain g as their satisfied literal
is called the antecedent of ¢, and is said to satisfy g. If the antecedent is not
an assumption clause it also is said to imply g (the word force is sometimes
seen). (2) Other clauses that contain ¢ as their (only) satisfied literal are called
volunteers." These clauses are said to re-imply q.

! In gardening lexicon, a volunteer is a plant that was not intentionally planted but
is not objectionable, whereas a weed is objectionable.

Notice that [¢] is a unit clause that implies or re-implies ¢, while [g, T] denotes
an “assumption” (decision or guess) to make ¢ true in the computation, but has
no logical effect on whether the sequence is satisfiable. []

Note that many solvers stop processing before an implication sequence is com-
plete, if a falsified clause is discovered, and many do not record volunteers.
However, the assignments that were recorded, and their order, determine, at
least implicitly, which clauses are in the implication sequence, as defined.

Ezxample 2.1. This example illustrates the definition of implication sequence,
using these clauses, which are part of a formula.

C, = [v,7,9,z] C = [y,w,w,z| C3y = [2,7T,7]

<

Cy = [w,v,7y] C = [u,v,w] Cs = [z t, 7] (1)

The following is a possible implication sequence, with one level per line. The
implied or re-implied literal is shown in parentheses for each clause.

1w, T]
2w, T], Cs(u)
3[t,T], Ces(w) Ca(y) Cs(z) Ca(w) Ci(L) (2)

Cs becomes a unit clause at level 2 with u as the implied literal, and v and w
as reason literals. Cy is a volunteer because it re-implies w. It appears in the
sequence at a point where all of its literals are assigned. The order in which Cy
and C3 appear depends on the solver, as they are both eligible as soon as y is
assigned true. This example is continued in Example 2.2. [

2.1 DPLL and Implication Sequences

Before the modern era of SAT solving the predominant solver methodology was a
backtracking search that came to be called DPLL, or a variant of that procedure.
“DPLL”” stands for Davis, Putnam, Logemann, and Loveland, who originated
the procedure in two classical papers [6, 5]. We briefly review this for unsatisfiable
formulas in terms of implication sequences.

DPLL builds an implication sequence as just described, and in addition keeps
track of whether each assumption is a left branch or a right branch in the search
tree of assignments that it is exploring. When an implication sequence is con-
cluded with a falsified clause on a left branch with assumption p, the procedure
retracts the entire propagation sequence including p, and starts a new propaga-
tion sequence with the right-branch assumption 7. Every left-branch assumption
is followed up with the complementary right-branch assumption. In Example 2.1,
the level-3 propagation sequence would be retracted and an alternative level-3
propagation sequence would be initiated with the assumption .

DPLL is naturally expressed with a recursive procedure. Early attempts to
enhance DPLL used essentially the same backtracking method, and attempted
to prune the search by deriving various clauses.

2.2 CDCL and Implication Sequences

CDCL began with GRASP [14], was soon improved by Chaff [13], and quickly
became the dominant SAT solving methodology of the modern era. Many pa-
pers mistakenly describe this method as DPLL enhanced with clause learning.
Although DPLL can be “annotated” to derive the same clauses as GRASP, it
might be forced also to derive exponentially many additional clauses. Therefore,
as claimed by the original GRASP authors, the way CDCL derives and uses
conflict clauses makes it an essentially different method. Stepping through the
process with an appropriate example quickly illustrates the difference.

Ezample 2.2. We continue with Example 2.1 at the conclusion of its implication
sequence, (1). The immediate goal is to derive a conflict clause that has exactly
one literal that was falsified during the latest propagation sequence, which is
level 3 in the example (see (2)). We illustrate the 1-UIP scheme, which is most
popular. A sequence of resolutions begins with the falsified clause, C, and works
backwards through antecedent clauses that are also at level 3.

D) =resy(Cy, C1) = [L, 7,7, w, w, Z]
Dy = I‘eSz(Cg, Dl) = [J-’?a T, u, W]

The literal z is called the first unique implication point (1-UIP) and Dy is called
the 1-UIP conflict clause because Ds has T as its only literal that was assigned
on level 3. Dy is called an asserting clause because, after all level-3 assignments
are retracted, Dy becomes a unit clause. The CDCL solver now “learns” D,
that is, D5 is now considered part of the formula.

So far, this could fit into the framework of DPLL, but now the CDCL differ-
ence emerges. All assignments made on level 3 are retracted. Do is now a unit
clause, as one literal became unassigned. Instead of starting another propagation
sequence with some assumption, the level-2 propagation sequence is continued
with the new unit clause Dy and implied literal .

1[v, T]
2w, T], Cs(u) Do(T) ... (3)

Notice that T is not the complement of any previous assumption. If T causes
further unit (or empty) clauses to be derived, they append to the level-2 propa-
gation sequence. If unit-clause propagation dies out without falsifying a clause,
then a new propagation sequence, with a new assumption literal, is initiated.

In standard CDCL, volunteers are ignored. Thus the position of Cy on level
3 does not matter. The continuations in Example 2.3 and Example 2.4 illustrate
issues that must be considered if volunteers are to be incorporated into the
clause-learning process. The inverse arcs technique [1] was a first step in this
direction. []

Ezxample 2.3. The formula and implication sequence are the same as in Exam-
ple 2.2. This example shows that volunteers can create a cyclic structure that
complicates correct reasoning.

The conflict clause derived from the above implication sequence is

Dy =[v,w, w, T|.
As things stand now, backtracking will go to level 2, where Ds has one unassigned
literal, but cannot go further due to the presence of @ and @. Can Dy be
strengthened to permit backtracking to level 17

Clause Cy meets all the criteria of Audemard et al. [1] for a usable inverse
arc: the reason literal y appears as an implied literal at level 3, the level of the
conflict, and its antecedent, Cs, participated in the derivation of the conflict
clause; the reason literal v appears at level 1, which precedes the level in which
w became satisfied; finally, w was satisfied at level 2, the current backtrack level.

The motivation is that resolving w out of the conflict clause makes progress
toward permitting a longer back jump, while introducing 7 might not be a
problem because J was able to be resolved out during the derivation of the
conflict clause.

However, care must be taken to actually perform the steps, and not simply
delete w, assuming the steps will succeed as hoped. (In the minisat2 conflict-
clause reduction, literals are simply deleted, and this is sound because only
antecedents are used.) The derivation may continue:

D3 =res,(Cs, Do) = [1L,7, T, W]
Dy = resw(C4, D3) [J_,T, T, g]
D5 =resy(Cy, Dy) = [L,7, T, W, W]

Dy re-introduced 7 at level 3, so it is not an asserting clause, like D3 is. The
extra level-3 literal had to be resolved out using Cs. But the resolvent Dj is just
the same clause as Dy, so the procedure is in a cycle. Indeed, [T, T] would be
an unsound derivation. A more favorable case is shown in Example 2.4. [

Example 2.4. A slight change to the clauses in Example 2.3 illustrates how a
volunteer can be useful. Clause C7 replaces clause Cy.

a7] 02 = [yaﬂa w, .17] C3 = [27 x, U]

Cl = [77 Ta

<

Cr = [w,v,%z] Cy = [u,v,w] Cs = [z t, 7]
We assume the same implication sequence as earlier examples, but with C7 in
the place of Cy. The conflict clause D5 is the same, since its derivation ignores
volunteers. C7 also meets all the criteria of Audemard et al. [1] for a usable
inverse arc (z plays the former role of y). The derivation may continue:

D3 =res,(Cs, D2) = [L,7, T, W]
D¢ =res,(C7, D3) = [L, 7, T, Z]
D7 = I‘eSZ(Cg, D6) = [J.,T, T]

This time, Z at level 3 has been re-introduced in Dg, making it non-asserting,
so C'5 must be used to resolve out the extra level-3 literal, producing D7. D7 is

asserting and is stronger than the previously derived asserting clauses, Dy and
D3. The end result is that D7 is soundly derived as the conflict clause, and a
back-jump to level 1 is possible. That is, after retracting all assignments made
at the current level 3, the procedure determines that none of the assignments at
level 2 influence D7, so these are all retracted, as well, and D7 is added as an
additional unit clause at level 1, with T as the satisfied literal.

1w, T], D:(T) ... (4)

Notice that T is not the complement of any previous assumption. If T causes
further unit (or empty) clauses to be derived, they append to the level-1 prop-
agation sequence. Thus the CDCL procedure has departed decisively from the
DPLL framework. In fact, it would be perfectly proper for the next assumption
literal to be w or ¢ again. []

Examples 2.3 and 2.4 demonstrate the importance of discovering cycles, if vol-
unteers are to be included in conflict-clause reduction.

2.3 Traditional Use of Implication Sequences

In the standard methodology originated in GRASP [14], and continued in Chaff
[13], Minisat [7], and other solvers, a conflict graph is constructed using only
antecedents, besides one chosen falsified clause. Several papers formalize this
technique [18, 3]. For any literal that has been assigned false, there is precisely
one antecedent in which its complement is the (true) implied literal (the an-
tecedent might be an assumption clause). The antecedent necessarily precedes
all occurrences of this false literal.

Definition 2.4 Let C' = {C;} be an implication sequence of clauses. Let C4 be
the subsequence of decisions and antecedents, and let Cy, be the subsequence of
volunteer clauses. We call C'4 an antecedent sequence to distinguish it from the
implication sequence. We suppose that the final decision in C' led to one or more
falsified clauses, the earliest being in C4. Any additional falsified clauses are in

Cy.

It is an easy matter to define an acyclic graph in which satisfied literals are
vertices, with | being the satisfied literal of the chosen falsified clause. If ¢ is a
vertex and its antecedent is [q, P1, ..., Pk |, there are directed edges from ¢ to
the vertices for pi, ..., pi; if ¢ is an assumption, there are no outgoing edges.?
Vertices are included in the conflict graph only if they are reachable from the L
vertex.

We have defined an antecedent sequence to be an implication sequence in
which all volunteers have been discarded. Since we have a one-to-one correspon-
dence between vertices and antecedents, we might regard the antecedents as

2 This edge orientation is opposite that seen in several papers, but is consistent with
the solvers’ actual data structure.

being the vertices, instead of the satisfied literals being the vertices. Then the
vertices of the conflict graph comprise a subset of the antecedent sequence, which
in turn is a subset of the full implication sequence.

3 Implication Sequences are Horn Renamable

The key insight for this paper is that the set of clauses in any implication se-
quence is Horn renamable. Thus the rich body of theory for Horn-clause reason-
ing can be brought to bear. Recall that a Horn clause has one or zero positive
literals. A Horn set is a set of Horn clauses. A set of clauses is called Horn
renamable if flipping the polarities of all occurrences of certain variables turns
it into a Horn set. It is known from the early days of theorem proving [10, 4, 12]
that:

Theorem 3.1 Positive unit resolution is complete for Horn sets; that is, the
empty clause is derivable from a Horn set if and only if it is derivable by a
resolution proof in which one operand is always a positive unit clause. []

Corollary 3.2 Unit resolution is complete for renamable Horn sets; that is, the
empty clause is derivable from a renamable Horn set if and only if it is derivable
by a resolution proof in which one operand is always a unit clause. []

The following simple lemma may be known to some researchers, at least
for antecedent sequences.? We state it here for self-containment and because it
appears not to be widely known and is so far unpublished.

Lemma 3.3 An implication sequence is Horn renamable.

Proof: Flip every negative satisfied literal and flip every negative assumption
literal. Now every clause is a Horn clause whose positive literal is its satisfied
literal. [|

It is unnecessary to do this flipping in the actual computation, but for conve-
nience of presentation, we assume without loss of generality that satisfied literals
are always positive. (The attentive reader may have noticed this in the examples;
Lemma 3.3 justifies the practice.)

4 Conflict-Clause Strengthening Problem

Let C = Cq, Cs, ..., Cp, be an implication sequence of clauses. As in Defini-
tion 2.4, let C'4 be the antecedent sequence of C'; that is, the subsequence of
decisions and antecedents. Let Cy be the subsequence of volunteer clauses. We

3 Previous papers use the term “implication graph” for the graph associated with
antecedents, but we avoid this term because our “implication sequence” includes
volunteers.

suppose that the final decision in C' led to one or more falsified clauses, the
earliest being in C4. Any additional falsified clauses are in Cy .

Let 7y be the conflict clause derived by the CDCL solver using the 1-UIP
scheme [14, 18, 3], or any scheme that derives asserting clauses (recall Section 2.2).
That is, 7o is derived from the conflict graph based on clauses in C'4 reachable
from the falsified clause; we call these clauses C%. We know that adding —(vo)
as unit clauses to C% makes an inconsistent set. The conflict-clause strengthen-
ing problem is to find another, stronger, conflict clause, v C 7o, where subset is
strict. There are several versions, depending on what is allowed.

Suppose the problem is cast as finding a minimum-width v C 7 that is
logically implied by C%, or equivalently, such that adding —(vy) as unit clauses
to C% causes inconsistency. Then it is a “folklore theorem” that this problem
can be solved in P-time and that the minimum-width clause is unique [16, 17].
The procedure implemented in MiniSat 2.0 [8] is believed to achieve this. This
procedure is now called recursive conflict-clause reduction.

A more ambitious goal is to require that v C 7y be the minimum-width
clause that is logically implied by all of C. That is, by including the volunteer
clauses in Cy, a smaller subset of 7y may be logically implied, or equivalently, a
smaller subset of —(vy) may be sufficient to produce inconsistency, as illustrated
in Example 2.4. We now define this problem formally in the NP framework as a
decision problem.

Definition 4.1 The decision form of the general minimum conflict clause prob-
lem is defined as follows.

Input: An implication sequence C' (Definition 2.3), a conflict clause o as de-
scribed above, and a positive integer K.

Question: Is there a clause v C o with at most K literals such that -(y) U C
is inconsistent?

Note that —(v) is treated as a set of unit clauses in this notation. []

Before addressing the complexity of the strengthening problem, we show in Sec-
tion 4.1 that any clause that is a logical consequence of an implication sequence
C has a simple, short derivation of a particular kind.

4.1 Implication Sequences and Linear Input Regular Derivations

The property stated in the next theorem is known for antecedent sequences (i.e.,
C?% in the above discussion), due to Beame et al. [3]. The next theorem shows
that it holds for entire implication sequences. The proof idea reduces the problem
to one covered by Beame et al..

Definition 4.2 A linear input regular (LIR) resolution derivation is a sequence
in which each derived clause after the first uses an “input” clause as the first
operand and the previous derived clause as the second operand, and does not
resolve on any literal more than once. (The terminology follows Biere [2], but

such derivations were less descriptively called “trivial resolutions” by Beame et
al. [3].) An “input” clause is one that was in the original formula or was derived
before the present derivation began. []

Theorem 4.3 Let C be an implication sequence and let the clause v be a logical
consequence of the clauses in C. (Note that assumption clauses do not play any
role in determining logical consequences.) Then ~ (or a subset of) can be
derived by a LIR resolution from C.

Proof: Assume W.L.O.G. (in view of Lemma 3.3) that C' and -y are Horn.
Add —(7) to the antecedents and volunteers of C', and find a refutation by positive
unit resolution, which is known to be complete for Horn clauses. (Theorem 3.1).
Derive each positive unit clause only once. The result is a conflict graph in
which every implied literal has a unique antecedent. For purposes of forming the
conflict graph, every positive literal of —(v) is treated as a decision, i.e., it has
no antecedent. If v has a positive literal z, then [Z] € —(v) is treated as a unit
clause in the input clause set. Following the terminology and results of Beame
et al. [3], the conflict graph has a cut in which the literals of —=(v) comprise the
“reason” side of the cut and the remaining literals comprise the “conflict” side
of the cut. Therefore, v can be derived by LIR.

Note that if « has a positive literal = it becomes a negative unit clause
[T]. Although it cannot play the role of the required positive unit clause for
resolution, eventually the positive unit clause [x] gets implied, and then the two
can resolve. This completes the proof. []

The implication of this theorem is that conflict clauses that are derivable from
implication sequences that include volunteers have short, non-redundant, deriva-
tions. For example, the procedures described by Audemard et al. [1] for using
“inverse arcs” apparently involve redundant derivations, as illustrated in Exam-
ple 2.4. The above theorem tells us that resolving on the same literal more than
once is unnecessary if a proper order is used.

Ezxample 4.1. Again consider the clauses and the same implication sequence as
in Example 2.4, where the use of the volunteer C; was successful, but required
resolving on some literals more than once.

]

C; = [w,v,z] Cs = [u, 7, w] Cg = [ac,t,u]

<

Ci = [v,7,9,2z] C = [y,u,w, =] C3 = [z7T,

Here is a linear input regular derivation from C1, the falsified clause:

Dy =resy(Cy, Ch) = [L,7, 7T, w, w, Z]
Ds =res,(C5, D1) = [L,7, 7, w, Z
Dg =res,, (C7, Dg) = [L, 7, T, Z]

Dyg =res,(C3, Dy) = [L,7, T|

The key difference from Example 2.4 is that resolution on z at level 3 was
delayed, so that it did not need to be re-introduced. [

After the initial conflict clause has been derived, there are several published
methods for reducing it. The method used in MiniSat 2.0 amounts to doing
additional resolutions (possibly redundantly) on literals that were implied in
earlier propagation sequences, yielding a subset of the original conflict clause [8,
16]. Tt is now known that the redundancy is efficiently avoidable [17]. Volunteer
clauses are not used. (Although Theorem 4.3 guarantees that a LIR proof exists,
even when volunteer clauses are included, it does not tell how to find it.)

Definition 4.4 Given a set of Horn clauses H, define directed edges between
variables by v — w whenever H contains some clause in which v occurs positively
and w occurs negatively. If the resulting graph is acyclic, then H is said to be
acyclic. A Horn renamable set of clauses is acyclic if it is acyclic Horn after some
renaming. []

Antecedent sequences are always acyclic. Although implication sequences often
are not acyclic, Theorem 4.3 guarantees that any logical consequence can be
derived from a subset of clauses that is acyclic.

Audemard et al. [1] described a method for using certain volunteers to resolve
away literals that were assigned in the propagation sequence at the backtrack
level, to enable longer back jumping. Their method might resolve on literals
more than once, and might produce a a conflict clause that is not a subset of
the original.

The general conflict-clause strengthening problem addressed in this paper
has the goal of reducing the final conflict clause to be a small subset of the
original, using volunteers in some cases, to achieve greater reductions than are
possible with antecedents alone.

4.2 The General Minimum Conflict Clause Problem Is
NP-Complete

Our next result is that the decision form of the general minimum conflict clause
problem, stated in Definition 4.1, is NP-complete. That is, finding a minimum-
cardinality subset v C g, where 7y is a conflict clause derived from a general
implication sequence, is NP-hard. This finding stands in sharp contrast with the
fact that the problem can be solved a low-degree polynomial time for implication
sequences without volunteers. Kleine Biining and Lettmann give a theorem with
somewhat the same flavor [11, Problem MI, p. 245], but Theorem 4.6 below
is not a corollary, because it requires that (A) the input clauses comprise an
implication sequence C that could be generated by a CDCL solver and (B) the
clause to be minimized must be a subset of a specified conflict clause g, that
could be derived by the same CDCL solver, rather than being any subset of
variables. CDCL-derivable conflict clauses are not arbitrary; it is known that
they have a property called 1-empowering [15]. Thus Theorem 4.6 has several
additional restrictions not found in “Problem MI.” The proof uses reduction
from the well known Hitting Set problem, whose formal definition follows.

Definition 4.5 The decision form of the Hitting Set problem is:

Input: A collection of sets S;, i+ = 1,...,m whose union is U = {z; | j =
1,...,n} and an integer M such that 0 < M < n.

Question: Is there a subset H C U with at most M elements such that H
intersects each S;? []

Theorem 4.6 The general minimum conflict clause (GMCC) problem is NP-
complete. The problem remains NP-complete if the implication sequence C' is
restricted to be an acyclic clause set, as defined in Definition 4.4.

Proof: The problem is in NP because, if a clause v is presented as a cer-
tificate, then the set of clauses —=(y) U C' is renamable-Horn, so can be checked
for inconsistency with unit-clause propagation in P-time. To show NP-hardness,
reduce from Hitting Set (Definition 4.5).

Using the notation in the definition, the transformation arranges that each
xz; € U is an assumption and 7y contains each Z;, as well as some “control”
literals. Clauses of the form [s;, Z; | are generated to specify set membership, i.e.,
x; € S; in the Hitting Set instance. Control variables y1, y2, ¥3, and z ensure that
the desired conflict clause g is derived by a CDCL solver. Additional “control”
clauses, including one volunteer clause, ensure that a sufficiently small-width ~
is logically implied if and only if the z; that occur in —(vy) provide a sufficiently
small H. The formal details follow.

Transform a Hitting Set instance ({S;}, M) into a GMCC instance (C, o, K)
with the following steps:

(1) Output the following propositional clause sequence over the variables z;,
j=1...,n;8,t1=1,...,m;yr, k=1,2,3; and z.
S-clauses: For each z; in order, j = 1,...,n: output the decision clause
[z, T], then, for each S; such that z; € S;, output [s;, T; .
decision y-clause: output [y1, T].

first z-clause: output [z, 91, Z1, T2 ,-.-, Tn).
second y-clause: output [y2, 71].
volunteer z-clause: output [z,7%2, 81, 52,..., Sm|.
third y-clause: output [ys, Uz

all-negative clause: output [91, 73, Z .
The above clauses comprise the sequence C, which is easily seen to be an impli-
cation sequence.
(2) Output the 1-UIP conflict clause vo = [U1, T1,.- ., Tn |-
(2) Output K = M + 1.

The output C, is clearly an acyclic Horn clause set, and can clearly be com-
puted in time quadratic in the length of the Hitting set instance. It is straightfor-
ward to show that (C, v, K) is a yes instance of GMCC if and only if ({S;}, M)
has a hitting set of size at most M = K — 1. []

Keep in mind that the sequence C' is not the whole formula presented to the
CDCL solver, just one “run” to a conflict clause. In general, given any specific
deterministic solver of this class, the transformation can be tweaked and the rest
of the formula can be specified to force the solver into the desired sequence of
decisions, implications and re-implications.

5 Conclusion

We considered the structure of the set of all fully assigned clauses at the time
that a conflict-driven clause-learning (CDCL) solver derives (learns) a conflict
clause. These clauses can be organized into an implication sequence that faith-
fully represents the actions of a CDCL solver, such as GRASP, Chaff, Minisat,
and others. However, these solvers ignore the information available in many of
these clauses, which we name “volunteers.” We showed that the set of clauses
in an implication sequence is always Horn renamable. It followed from this that
any clause that is logically implied by the clauses of the implication sequence
has a linear input regular derivation (Definition 4.2). We also showed that in
this environment trying to squeeze a derived clause, such as a conflict clause,
down to its absolutely minimum width is NP-hard.

Acknowledgment We thank the anonymous referees for helpful comments.

References

1. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais. A generalized
framework for conflict analysis. In SAT. Springer, 2008.

2. A. Biere. Picosat essentials. J. Satisfiability, Boolean Modeling and Comp., 4:75—
97, 2008.

3. Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. J. Artificial Intelligence Research, 22,
2004.

4. C-L. Chang and R.C-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
1973.

5. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394-397, 1962.

6. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the Association for Computing Machinery, 7:201-215, 1960.

7. N. Eén and N. Sérensson. An Extensible SAT-solver. In SAT, LNCS 2919, Springer,
2003.

8. Niklas Eén and Niklas Sérensson. MiniSat v.1.13 — a SAT solver with conflict-clause
minimization. Poster at SAT, 2005.

9. Hyojung H. and F. Somenzi. On-the-fly clause improvement. In SAT, LNCS 5584,
20009.

10. L. J. Henschen and L. Wos. Unit refutations and Horn sets. JACM, 21, 1974.

11. H. Kleine Biining and T. Lettmann. Propositional Logic: Deduction and Algo-
rithms. 1999.

12. D. W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland,
1978.

13. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference, June 2001.

14. J. P. Marques-Silva and K. A. Sakallah. GRASP-a search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48:506-521, 1999.

15. K. Pipatsrisawat and A. Darwiche. A new clause learning scheme for efficient
unsatisfiability proofs. In AAAI 2008.

16. N. Sorensson and A. Biere. Minimizing learned clauses. In SAT, LNCS 5584, 2009.

17. Allen Van Gelder. Improved conflict-clause minimization leads to improved propo-
sitional proof traces. In SAT, LNCS 5584, Springer, 2009.

18. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a boolean satisfiability solver. In ICCAD, Nov. 2001.

