
Translating
Pseudo-Boolean Constraints into CNF

Amir Aavani
aaa78@sfu.ca

Simon Fraser University

1 Introduction

A Pseudo-Boolean constraint (PB-constraint) is a generalization of a clause. A
PB-constraint is an inequality (equality) on a linear combination of Boolean lit-
erals (

∑n
i=1 aili OP b) where a1, · · · an and b are constant integers, l1, · · · , ln are

literals and OP is a comparison operator. The left-hand side of a PB-constraint
under assignment A is equal to the sum of the coefficients whose corresponding
literals are mapped to true by A. This kind of constraints has been widely used
in expressing NP-complete problems. Several approaches have been proposed to
translate a PB-constraint to CNF, [3], [2].

In this paper, we propose a new encoding for translating PB-constraints whose
comparison operator is “=” to CNF. The CNF produced by the proposed en-
coding has small size, and also the constraints for which one can expect the
SAT solvers to perform well on the produced CNF can be characterized. We
show that there are many constraints for which the proposed encoding has a
good performance. It worths mentioning that an arbitrary PB-constraint can be
rewritten as a single equivalent PB-constraint whose comparison operator is “=”
and all its constant integers are positive.
Definition 1. Given constraint Q on set of variables X, we call the pair 〈v, C〉,
where v is a Boolean variable, C is a set of clauses on X∪Y ∪{v} and Y is a set of
propositional variables, a valid translation if for every satisfying total assignment
A to X ∪ Y ∪ {v} for C, A satisfies Q iff it maps v to true, i.e., C |= v ⇔ Q.

2 Proposed Method

Let a PBMod-constraint be an equation in the following form:
n∑

i=1

a′ili = b′ (mod M). (1)

where 0 ≤ a′i < M for all 1 ≤ i ≤ n and 0 ≤ b′ < M . Total Assignment A is
a solution to (1) iff the value of left-hand side summation under A minus the
value of right-hand side of the equation, b′, is a multiple of M .
Definition 2. The PBMod-constraint Q(M) :

∑
a′ili = b′(mod M) is called to

be the conversion of the PB-constraint Q :
∑

aili = b, modulo M iff
1. a′i = ai mod M
2. b′ = b mod M

Proposition 1. Let M = {M1, · · · , Mm} be a set of m relatively prime in-
tegers. The set of assignments satisfying Q :

∑
aili = b is exactly the same

as the set of assignments satisfying all the m PBMod-constraints Q(Mk) if∏m
k=1 Mk > S =

∑
ai.

One candidate for the set M is a subset of prime numbers. One can enumerate
the prime numbers and add them to the set of modulos, MP = {2, 3, ..., Pm}, until

2

their multiplication exceeds S. The next proposition gives us an estimation for
the size of set MP as well as the maximum value in MP.
Proposition 2. Let MP = {2, · · · , Pm} be the set of primes s.t.

∏
p∈MP p ≥ S.

Then:
1. m = |MP| ≤ log S.
2. Pm < (log S)2.

Theorem 1. Let Q :
∑

aili = b be a PB-constraint. Also let MP = {P1, · · · , Pm}
be as above, and the pair 〈vk, Ck〉 be a valid translation for PBMod-constraint
Q(Pk). Then, the pair 〈v, C〉 is a valid translation for PB-constraint Q where
C = ∪kCk ∪ C ′ and C ′ is the set of clauses describing v ⇔ (v1 ∧ v2 · · · ∧ vm).
Translation of PBMod-constraint Through DP The translation presented
here is similar to translation through BDD, described in [3]. Tseitin variable,
Dl

m, is defined inductively as follows:

Dl
m =


> if l and m are both zero;
⊥ l = 0 and m > 0;
(Dl−1

(m−al)mod M ∧ xl) ∨ (Dl−1
m ∧ ¬xl) Otherwise

3 Performance of Unit Propagation

There are three situations in which UP is able to infer the input variables values
of a PB-constraint Q:
1. Unit Propagation Detects Inconsistency: If Q is unsatisfiable, UP may be

able to infer that there is no assignment satisfying Q.
2. Unit Propagation Solves Constraint: UP may be able to infer the whole

solution for Q if there is just a single satisfying solution to Q.
3. Unit Propagation Infers the Value for an Input Variable: UP may be able

to infer that the value of input variable xk is true/false if xk takes the same
value in all the solutions to Q. This is a generalization of previous case.

It can be shown that for each of the above cases, there are at least (
P

ai

log
P

ai
)n+1 =

2nP oly(n)

Poly(n)n+1 different PB-constraints in the form
∑

a1li = b such that CNFs, pro-
duced using the proposed approach, allow UP to infer input variables.

4 Conclusion
Our translation produces a polynomial size CNF w.r.t. the input size. We also
argued that for exponentially many instances, produced CNFs are arc-consistent.
This number is much bigger for our encoding comparing to the existing encod-
ings. Interested readers are invited to read the complete version of this paper [1].

References

1. A. Aavani. Translating Pseudo-Boolean Constraints into CNF.
http://arxiv.org/abs/1104.1479.

2. O. Bailleux, Y. Boufkhad, and O. Roussel. New Encodings of Pseudo-Boolean
Constraints into CNF. Theory and Applications of Satisfiability Testing-SAT 2009,
pages 181–194, 2009.

3. N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2(3-4):1–25, 2006.

