
Model Counting Using the Inclusion-Exclusion Principle

Huxley Bennett and Sriram Sankaranarayanan ?

University of Colorado, Boulder, CO. first.lastname@colorado.edu

The inclusion-exclusion principle is a well-known mathematical principle used to
count the number of elements in the union of a collection of sets in terms of intersec-
tions of sub-collections. We present an algorithm for counting the number of solutions
of a given k-SAT formula using the inclusion-exclusion principle. The key contribution
of our work consists of a novel subsumption pruning technique. Subsumption pruning
exploits the alternating structure of the terms involved in the inclusion-exclusion prin-
ciple to discover term cancellations that can account for the individual contributions of
a large number of terms in a single step.

The Inclusion-Exclusion Principle and #SAT

Given sets A1, . . . , Am, m > 0, the inclusion-exclusion principle states that |
⋃m

i=1 Ai| =∑m
i=1 |Ai| −

∑
1≤i<j≤m |Ai ∩Aj |+ · · · (−1)m+1 |A1 ∩A2 ∩ · · · ∩Am| . It is well-

known that this principle can be applied to count the number of solutions of a given
k-CNF formula [4, 3].

Let ϕ be a k-CNF formula consisting of variables x1, . . . , xn and clauses C1, . . . , Cm.
Each clause lits(Ci) : {`(1,k), . . . , `(i,k)} is a set of k literals, each literal of the form
`i : xj or `i : ¬xj . We will count the number NU : #UNSAT(ϕ) of solutions that do
not satisfy ϕ using the inclusion-exclusion principle. Let A1, . . . , Am denote the sets
of variable assignments which dis-satisfy the clauses C1, . . . , Cm, respectively, in ϕ.
Therefore, NU = |

⋃m
i=1 Ai| can be calculated using the inclusion-exclusion principle,

as a summation ranging over all subsets of clauses S ⊆ {C1, . . . , Cm}:

NU =
∑

S⊆{C1,...,Cm}

t(S) where t(S) =
{

0 if ∃ j, {xj ,¬xj} ⊆ lits(S)(
(−1)|S|+1 · 2n−|lits(S)|) otherwise

,

where lits(S) represents all the literals appearing in the clauses of S. Given NU , we
may obtain the number of satisfying solutions as 2n − NU . Note that the number of
terms involved in the summation is exponential in the formula size.

One solution to improving the complexity of this procedure is to prune away terms
involving subsets S where N(S) = 0 in the summation above. This is achieved by
avoiding subsets S which include interfering clauses Cj , Ck that contain a variable xi

and its negation ¬xi. Such an optimization has been proposed elsewhere [3, 4]. In this
work, we present yet another optimization through subsumption pruning.

? This work was partially supported by the National Science Foundation (NSF) award CNS-
1016994.

Tree Exploration and Subsumption Pruning

We now present a brief sketch of our subsumption pruning technique. More details are
available from an extended version of this paper [1].

Our technique arranges the terms in the inclusion-exclusion formula as a tree and
performs a recursive depth-first tree exploration to consider non-interfering clause se-
quences of the form [Ci1; . . . ;Cid]. Each node v in the search tree is defined by its
current clause sequence S : [Ci1;Ci2; . . . ;Cid], where d ≥ 1 is the depth of the node.
The node is associated with the term t(S) = (−1)d+12n−|lits(S)|. Through the search,
we maintain the invariant that S is interference free and that 1 ≤ i1 < · · · < id ≤ m.

Consider a node S : [Ci1; . . . ;Cij]. Let T : [S;Cl] be a child of S extended by
adding the clause Cl. We say that S subsumes T iff lits(S) = lits(T). In other words,
every literal in the clause Cl is already contained in some clause in S. The main theorem
in this paper takes advantage of subsumptions to make a drastic improvement on the
basic scheme given previously:

Theorem 1. Let Tj be a subsumed child of S in the search tree. Considering any child
Tl : [S;Cl] of S, where l > j and the corresponding child T ′

l : [Tj : Cl], then t(T ′
l) =

−t(Tl) and t(subtree(T ′
l)) = −t(subtree(Tl)). We conclude that t(subtree(S)) =∑j−1

i=1 t(subtree(Ti)).

This theorem, whose proof is in the extended version of the paper, concludes that
if S subsumes one of its children Tj , then due to the alternating sum involved in the
inclusion-exclusion principle that the children of S and Tj cancel each other out. In
practice this means that we need only explore the children T1, . . . , Tj−1 of S, a signifi-
cant improvement over evaluating all of the children of S, especially when j is small.

Preliminary experimental evaluations of our technique is reported in our extended
report [1]. We present a summary of these results obtained over randomly generated
k-SAT instances. (A) The application of our subsumption pruning technique provides a
significant speedup (2-3x) on most of the larger instances. Nevertheless, the technique
itself is limited in the size of formulae that can be handled, especially when compared
to other approaches to counting using DPLL [2]. (B) An integration of our technique
inside DPLL-based model counters compares favorably to existing DPLL-based model
counters CDP and Relsat.

Currently, we are in the process of evaluating our approach over structured bench-
marks and analyzing the expected running times for our technique over randomly gen-
erated formulae.

References
1. H. Bennett and S. Sankaranarayanan. Model counting using the inclusion-exclusion principle,

2011. Draft (available upon request).
2. C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In Handbook of Satisfiability,

chapter 20. IOS Press, 2008.
3. K. Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM Journal

on Computing, 18(2):385–391, 1989.
4. E. L. Lozinskii. Counting propositional models. Information Processing Letters, 41:327–332,

1992.

