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Many mathematical and practical problems can be expressed as constraint sat-
isfaction problems (CSPs). The general CSP is known to be NP-complete, but
many different conditions have been identified which are sufficient to ensure
that classes of instances satisfying those conditions are tractable, that is, solv-
able in polynomial time [1-4, 7]. The increasing efficiency of SAT-solvers has led
to the development of SAT-based constraint solvers and various SAT encodings
for CSPs [6]. However, most previous comparison between such encodings has
been purely empirical. In a recent paper we showed that current SAT-solvers
will decide the satisfiability of the direct encoding of any CSP instance with
bounded width in expected polynomial time [5]. In this paper we give a theory-
based argument to prefer the order encoding instead for certain other families
of tractable constraint satisfaction problems. We consider problems of the form
CSP(C), consisting of all CSP instances whose constraint relations belong to
some fixed set of relations C, known as a constraint language. Schaefer’s well-
known dichotomy theorem [7] identifies all the tractable constraint languages
over a Boolean domain, that is, all the tractable language classes for SAT.

A sparse encoding of a CSP instance introduces a new Boolean variable,
T, 4, for each possible variable assignment, v = a. The log encoding introduces
a Boolean variable for each bit in the value of a CSP wvariable. It turns out
that under such encodings tractable CSPs cannot be translated into tractable
language classes of SAT. In particular, we have shown that:
Proposition 1 No sparse encoding of a CSP instance with domain size > 2
belongs to a tractable language class of SAT. Moreover, the log encoding of any
CSP instance with domain size > T containing certain unary constraints does
not belong to any tractable language class of SAT.

In the order encoding [8] each Boolean variable, IL‘§ o> Tepresents a comparison,
v < ¢. Under that encoding we have shown that certain tractable CSP classes are
translated to tractable language classes of SAT, and hence efficiently solvable.

For example, a CSP instance is called constant-closed if every constraint in
it allows some fixed constant value d to be assigned to all variables in its scope.
Theorem 1 If all the constraints in a CSP instance are constant-closed for the
lowest domain value, then its order encoding will be constant-closed for the value
True.
Hence, we have shown that using the order encoding to translate a CSP instance
that is constant-closed for the lowest domain value gives a set of clauses satisfying
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the first condition of Schaefer’s Dichotomy Theorem. Similarly, constraints that
are constant-closed under the highest domain value translate under the order
encoding to clauses that satisfy the second condition of that theorem.

A rather more interesting family of tractable constraint satisfaction problems
is the class of CSPs whose constraints are all maz-closed.

Lemma 1 ([4]) If the domain of the variables is {True, False}, with False <
True, then a constraint is min-closed if and only if it is logically equivalent to a
conjunction of Horn clauses over literals representing comparisons.

Theorem 2 If a CSP instance P contains mazx-closed constraints only, then its
order encoding will be min-closed.

Hence, max-closed constraints translate using the order encoding to clauses sat-
isfying the third condition of Schaefer’s Dichotomy Theorem. By symmetry be-
tween min-closed and max-closed constraints, min-closed constraints translate
to clauses satisfying the fourth condition of Schaefer’s Dichotomy Theorem.
Connected-row-convex constraints were first defined in [3] using a standard
matrix representation of binary relations. Here is an alternative characterisation:

Lemma 2 ([2]) A constraint is connected-row-convex if and only if it is log-
ically equivalent to a conjunction of 2-CNF clauses over literals representing
coOmparisons.

Connected-row-convex constraints translate to clauses satisfying the fifth condi-
tion of Schaefer’s Dichotomy Theorem due to the following result:

Theorem 3 If a CSP instance P contains only connected-row-convex constraints,
then its order encoding will be connected-row-conver.

The final, sixth, condition in Schaefer’s Dichotomy Theorem can never be
satisfied using the order encoding, since (for all domains with 3 or more elements)
it is already broken by the consistency clauses, ﬁ(xg,cq) V (25,). Hence we have
given a complete list of all constraint languages which are encoded to tractable
language classes for SAT using the order encoding.

References

1. D. Cohen and P. Jeavons. The complexity of constraint languages. Handbook of
Constraint Programming, Chapter 8, pages 245-280, Elsevier 2006.

2. D. Cohen et al. Building tractable disjunctive constraints. Journal of the ACM,
vol. 47, pages 826-853, ACM 2000.

3. Y. Deville et al. Constraint satisfaction over connected row convex constraints.
Proceedings of IJCAI’97, pages 405-411, IJCAI 1997.

4. P. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence Journal, pages 327-339, Elsevier 1995.

5. P. Jeavons and J. Petke. Local consistency and SAT-solvers. Principles and Prac-
tice of Constraint Programming - CP’10, pages 398-413, Springer 2010.

6. S.D. Prestwich. CNF encodings. Handbook of Satisfiability, Chapter 2, pages 75-97,
IOS Press 2009.

7. T.J. Schaefer. The Complexity of Satisfiability Problems. Proceedings of the 10th
ACM Symposium on Theory of Computing - STOC’78, pages 216-226, ACM 1978.

8. N. Tamura et al. Compiling finite linear CSP into SAT. Constraints Journal, vol.
14, pages 254-272, Springer 2009.



