Applying UCT to Boolean Satisfiability

Alessandro Previti', Raghuram Ramanujan?, Marco Schaerf!, and Bart
Selman?

! Dipartimento di Informatica e Sistemistica Antonio Ruberti,
Sapienza, Universita di Roma,
Roma, Italy.
elsandro84@gmail.com, marco.schaerf@uniromal.it
2 Department of Computer Science
Cornell University
Ithaca, New York
raghu,selman@cs.cornell.edu **

In this paper we perform a preliminary investigation into the application of
sampling-based search algorithms to satisfiability testing of propositional for-
mulas in Conjunctive Normal Form (CNF). In particular, we adapt the Upper
Confidence bounds applied to Trees (UCT) algorithm [5] which has been success-
fully used in many game playing programs including MoGo, one of the strongest
computer Go players [3].

Rather than explore the search space in a depth-first fashion, in the style of
DPLL [2], UCT repeatedly starts from the root node and incrementally builds
a tree based on estimates of node utilities and node visit frequencies computed
from previous iterations. In most implementations of UCT, the estimated util-
ity of a new node is computed using Monte-Carlo methods, i.e., by generating
random completions of the search (termed “playouts”) and averaging their out-
comes. This utility is revised each time the search revisits the node using the
estimated values of the children. This technique is especially effective when no
adequate heuristic is available to perform this value estimation task.

In this paper, we introduce and study an algorithm called UCTSAT that em-
ploys the UCT search control mechanism but replaces the playouts with a heuris-
tic to estimate the initial utility of a node. The heuristic we use is the fraction
of the total set of clauses that are satisfied by the partial assignment associated
with the node; this fraction is computed after the application of unit propa-
gation. While we do not expect UCTSAT to outperform the highly-optimized,
state of the art SAT solvers (especially with respect to CPU time), we believe
that the development of an algorithm based on a radically different search tech-
nique is important for at least two reasons: (a) the hardness of SAT instances
is related to the algorithm used [1], and hence UCTSAT, which uses a differ-
ent search strategy, can provide useful and new insights into the complexity of
SAT instances; and (b) because such an algorithm can be useful when included
in a portfolio of algorithms (see, for example, [6]) where very different solution
techniques can help expand the range of applicability of the portfolio.

** Supported by NSF Expeditions in Computing award for Computational Sustain-
ability, 0832782; NSF IIS grant 0514429; and IISI, Cornell Univ. (AFOSR grant
FA9550-04-1-0151)

As such, we focus our efforts on understanding whether UCTSAT is capable
of solving SAT instances using smaller search trees than DPLL. To simplify
the comparisons, we contrast our algorithm against a no-frills implementation of
DPLL. We set the exploration bias parameter in UCTSAT to 0 as this yielded the
best performance on average. We also experimented with varying the number of
atoms that UCTSAT assigned at a given node in the search tree and discovered
that setting more than one atom at once hurt the performance of the algorithm.

We compared the performance of DPLL and UCTSAT on problem instances
drawn from the SATLIB repository [4]. On uniform random 3-SAT and flat-graph
coloring instances of various sizes, we found little difference in the sizes of the
search trees constructed by the two algorithms. We believe that this is due to the
unstructured nature of these instances — UCTSAT works well when each explo-
ration of the tree yields information that can be successfully used in subsequent
iterations. In instances drawn from real-world problems (namely, single-stuck-
at-fault analysis problems) that exhibit structure, we discovered that UCTSAT
constructs significantly smaller search trees than DPLL — this is illustrated in
table 1.

Table 1. Average tree sizes (number of nodes) for SSA circuit fault analysis instances

Instance DPLL UCTSAT
ssa-7552-038 9183 173
ssa-7552-158 6564 134
ssa-7552-159 5513 147
ssa-7552-160 4095 164

References

1. A. Aguirre and M.Y. Vardi. Random 3-SAT and BDDs: The plot thickens fur-
ther. In Principles and Practice of Constraint ProgrammingCP 2001, pages 121-136.
Springer, 2001.

2. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394-397, 1962.

3. Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer go.
In Dieter Fox and Carla P. Gomes, editors, AAAI pages 1537-1540. AAAI Press,
2008.

4. H.H. Hoos and T. Stiitzle. SAT2000: Highlights of Satisfiability Research in the
year 2000, chapter SATLIB: An Online Resource for Research on SAT. Frontiers
in Artificial Intelligence and Applications. Kluwer Academic, pages 283—292, 2000.
Web site available at: http://www.cs.ubc.ca/ hoos/SATLIB /index-ubc.html.

5. L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. Machine Learning:
ECML 2006, pages 282-293, 2006.

6. L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, 32(1):565—
606, 2008.

