
A Compact and Efficient SAT-encoding of
Finite Domain CSP

Tomoya Tanjo1, Naoyuki Tamura2, and Mutsunori Banbara2

1 Graduate School of Engineering, Kobe University, JAPAN
2 Information Science and Technology Center, Kobe University, JAPAN

tanjo@stu.kobe-u.ac.jp, tamura@kobe-u.ac.jp, banbara@kobe-u.ac.jp

Extended Abstract

A (finite) Constraint Satisfaction Problem (CSP) is a combinatorial problem
to find an assignment which satisfies all given constraints over finite domains.
A SAT-based CSP solver is a program which solves a CSP by encoding it to
SAT and searching solutions by SAT solvers. Remarkable improvements in the
efficiency of SAT solvers make SAT-based CSP solvers applicable for solving
hard and practical problems. A number of SAT encoding methods have been
therefore proposed: direct encoding, support encoding, log encoding, log-support
encoding, and order encoding.

Among them, order encoding [4] has showed a good performance for a wide
variety of problems, including Open-Shop Scheduling problems, two-dimensional
strip packing problems, and test case generation. Its effectiveness has also been
shown by the fact that a SAT-based CSP solver Sugar 3 became a winner in
several categories of the 2008 and 2009 International CSP Solver Competitions.

However, in the order encoding, the size of SAT-encoded instances becomes
huge when the domain size of the original CSP is large. On the other hand, the
log encoding [3, 1] uses a bit-wise representation for integer variables. The size of
SAT-encoded instances is therefore compact (linear to log d), but its performance
is slow in general because it requires many inference steps to “ripple” carries.

In this paper, we propose a new encoding, named compact order encoding,
aiming to be compact and efficient. The basic idea of the compact order encoding
is the use of a numeric system of base B ≥ 2. That is, each integer variable x is
represented by a summation

∑m−1
i=0 Bixi where m = dlogB de and 0 ≤ xi < B

for all xi, and each xi is encoded by the order encoding.

Each ternary constraints of addition and multiplication can be encoded into
at most O(B2 logB d) and O(B3 logB d + B2 log2B d) clauses respectively which
are much less than O(d2) clauses of the order encoding. The compact order en-
coding can generate much efficient SAT instance than the log encoding in general
because it requires fewer carry propagations. Please note that the compact order
encoding with base B = 2 is equivalent to the log encoding, and the one with
base B ≥ d is equivalent to the order encoding.

3 http://bach.istc.kobe-u.ac.jp/sugar/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

C
P

U
 ti

m
e

Number of solved instances

Order Encoding
Compact Order Encoding

Log Encoding
choco
Mistral

Fig. 1. Cactus plot of different encodings, choco, and Mistral for OSS instances.

To evaluate the effectiveness and scalability of our encoding, we used the most
difficult series of Open-Shop Scheduling (OSS) benchmark set by Brucker et al.
We also used the instances with very large domain sizes, which are generated
from OSS instances by multiplying the process times by constant factor s ∈
{1, 10, 20, 100, 200, 1000}. The performance of the compact order encoding with

m = 2 (i.e. B = dd 1
2 e) is compared with those of the order and log encodings in

addition to the state-of-the-art CSP solvers choco 2.11 [5] and Mistral 1.550 [2].
Fig. 1 shows the cactus plot of benchmark results in which the number of

solved instances is on the x-axis and the CPU time is on the y-axis. The compact
order encoding solved the most instances for almost any CPU time limit and it
solved large instances which could not be solved by order solvers.

As future work, we plan to investigate the choice of appropriate base B for
solving a wide variety of problems.

References

1. Gelder, A.V.: Another look at graph coloring via propositional satisfiability. Discrete
Applied Mathematics 156(2), 230–243 (2008)

2. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the 3rd
International CSP Solver Competition. pp. 31–39 (2008)

3. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress. pp. 253–258 (1994)

4. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

5. The choco team: choco: an open source Java constraint programming library. In:
Proceedings of the 3rd International CSP Solver Competition. pp. 7–13 (2008)

